Debris clearance by microglia: an essential link between degeneration and regeneration

Neural Regeneration, Institute of Reconstructive Neurobiology, University Bonn and Hertie-Foundation, Bonn, Germany.
Brain (Impact Factor: 10.23). 07/2008; 132(Pt 2):288-95. DOI: 10.1093/brain/awn109
Source: PubMed

ABSTRACT Microglia are cells of myeloid origin that populate the CNS during early development and form the brain's innate immune cell type. They perform homoeostatic activity in the normal CNS, a function associated with high motility of their ramified processes and their constant phagocytic clearance of cell debris. This debris clearance role is amplified in CNS injury, where there is frank loss of tissue and recruitment of microglia to the injured area. Recent evidence suggests that this phagocytic clearance following injury is more than simply tidying up, but instead plays a fundamental role in facilitating the reorganization of neuronal circuits and triggering repair. Insufficient clearance by microglia, prevalent in several neurodegenerative diseases and declining with ageing, is associated with an inadequate regenerative response. Thus, understanding the mechanism and functional significance of microglial-mediated clearance of tissue debris following injury may open up exciting new therapeutic avenues.


Available from: Mark R Kotter, May 07, 2014
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior. Copyright © 2015. Published by Elsevier Inc.
    Hormones and Behavior 04/2015; DOI:10.1016/j.yhbeh.2015.04.013 · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.
    Journal of Neuroinflammation 04/2015; 12(1):74. DOI:10.1186/s12974-015-0291-y · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late-stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain. GLIA 2015. © 2015 Wiley Periodicals, Inc.
    Glia 04/2015; DOI:10.1002/glia.22835 · 5.47 Impact Factor