Metabolite Identification Using a Nanoelectrospray LC-EC-array-MS Integrated System

Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA.
Analytical Chemistry (Impact Factor: 5.64). 07/2008; 80(15):5912-23. DOI: 10.1021/ac800507y
Source: PubMed


A novel approach to the parallel coupling of normal-bore high-performance liquid chromatography (LC) with electrochemical-array detection (EC-array) and nanoelectrospray mass spectrometry (MS), based on the use of a nanosplitting interface, is described where both detectors are utilized at their optimal detection mode for parallel configuration. The dual detection platform was shown to maintain full chromatographic integrity with retention times and peak widths at half-height between the EC-array and MS displaying high reproducibility with relative standard deviations of <2%. Detection compatibility between the two detectors at the part per billion level injected on-column was demonstrated using selected metabolites representative of the diversity typically encountered in physiological systems. Metabolites were detected with equal efficiency whether neat or in serum, demonstrating the system's ability to handle biological samples with limited sample cleanup and reduced concern for biological matrix effects. Direct quantification of known analytes from the EC-array signal using Faraday's law can eliminate the need for isotopically labeled internal standards. The system was successfully applied to the detection and characterization of metabolites of phenylbutyrate from serum samples of Huntington's disease patients in an example that illustrates the complementarity of the dual detection nanoelectrospray LC-EC-array-MS system.

Download full-text


Available from: Steven M Hersch,
  • Source
    • "For metabolomics, this involves primarily analysis of NMR and MS raw data, reconstruction of metabolic networks, and modeling of metabolic flux and regulations in extended networks. There has been considerable effort expended on the various technical problems of MS and NMR data analyses, such as spectral alignment, semi-automated metabolite identification and quantification (Weljie, Newton et al. 2006) (Coulier, Bas et al. 2006; Van der Greef, Hankemeier et al. 2006; Zhao, Stoyanova et al. 2006; Schiavo, Ebbel et al. 2008; Kind, Wohlgemuth et al. 2009; Ebbel, Leymarie et al. 2010; Kumari, Stevens et al. 2011; Sands, Coen et al. 2011; Veselkov, Vingara et al. 2011). It is commonly recognized that many features in NMR and MS spectra are unassigned, and therefore difficult to quantify rigorously and uninterpretable in the biochemical context. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.
    Pharmacology [?] Therapeutics 12/2011; 133(3):366-91. DOI:10.1016/j.pharmthera.2011.12.007 · 9.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An LC-MS-NMR platform is demonstrated, which combines two innovations in microscale analysis, nanoSplitter LC-MS and microdroplet NMR, for the identification of unknown compounds found at low concentrations in complex sample matrixes as frequently encountered in metabolomics or natural products discovery. The nanoSplitter provides the high sensitivity of nanoelectrospray MS while allowing 98% of the HPLC effluent from a large-bore LC column to be collected and concentrated for NMR. Microdroplet NMR is a droplet microfluidic NMR loading method providing severalfold higher sample efficiency than conventional flow injection methods. Performing NMR offline from LC-UV-MS accommodates the disparity between MS and NMR in their sample mass and time requirements, as well as allowing NMR spectra to be requested retrospectively, after review of the LC-MS data. Interpretable 1D NMR spectra were obtained from analytes at the 200-ng level, in 1 h/well automated NMR data acquisitions. The system also showed excellent intra- and interdetector reproducibility with retention time RSD values less than 2% and sample recovery on the order of 93%. When applied to a cyanobacterial extract showing antibacterial activity, the platform recognized several previously known metabolites, down to the 1% level, in a single 30-mug injection, and prioritized one unknown for further study.
    Analytical Chemistry 11/2008; 80(21):8045-54. DOI:10.1021/ac801049k · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytryptamine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n=25) and healthy controls (HC, n=30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P=0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values<0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp-5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp-5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia.
    Molecular Psychiatry 04/2009; 15(9):938-53. DOI:10.1038/mp.2009.33 · 14.50 Impact Factor
Show more