Article

Pseudo-esterase activity of human albumin - Slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines

Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(33):22582-90. DOI: 10.1074/jbc.M802555200
Source: PubMed

ABSTRACT Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nitrophenyl acetate and determine the relationship between stable adduct formation and turnover. Fatty acid-free human albumin was treated with 0.5 mm p-nitrophenyl acetate for 5 min to 2 weeks, or with 10 mm p-nitrophenyl acetate for 48 h to 2 weeks. Aliquots were digested with pepsin, trypsin, or GluC and analyzed by mass spectrometry to identify labeled residues. Only Tyr-411 was acetylated within the first 5 min of reaction with 0.5 mm p-nitrophenyl acetate. After 0.5-6 h there was partial acetylation of 16-17 residues including Asp-1, Lys-4, Lys-12, Tyr-411, Lys-413, and Lys-414. Treatment with 10 mm p-nitrophenyl acetate resulted in acetylation of 59 lysines, 10 serines, 8 threonines, 4 tyrosines, and Asp-1. When Tyr-411 was blocked with diisopropylfluorophosphate or chlorpyrifos oxon, albumin had normal esterase activity with beta-naphthyl acetate as visualized on a nondenaturing gel. However, after 82 residues had been acetylated, esterase activity was almost completely inhibited. The half-life for deacetylation of Tyr-411 at pH 8.0, 22 degrees C was 61 +/- 4 h. Acetylated lysines formed adducts that were even more stable. In conclusion, the pseudo-esterase activity of albumin is the result of irreversible acetylation of 82 residues and is not the result of turnover.

1 Follower
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ester linkages contained within dental resin monomers (such as Bisphenol A-glycidylmethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA)) are susceptible to hydrolytic degradation by salivary esterases, however very little is known about the specific esterase activities implicated in this process. The objective of this work was to isolate and identify the dominant proteins from saliva that are associated with the esterase activities shown to be involved in the degradation of BisGMA.
    Dental materials: official publication of the Academy of Dental Materials 06/2014; DOI:10.1016/j.dental.2014.05.031 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Boc5, the first nonpeptidic agonist of Glucagon-like peptide-1 receptor, has been recognized as a potential candidate for treatment of diabetes. However, the metabolic behaviours of this novel molecule in both human and experimental animals remain unclear. This study aimed to explore the metabolic behaviours of Boc5 in biological preparations from human, pig and rat. Boc5 was found to be very stable in liver microsomes of human, pig and rat, but it can be degraded to two metabolites in plasma from all three species, via the successive hydrolysis of the C-22 esters. Chemical inhibition studies using selective esterase inhibitors and assays with purified enzymes suggested that Boc5 hydrolysis in human was totally mediated by human serum albumin (HSA) rather than esterases. ESI-TOF-MS/MS analysis revealed that Lys525 of HSA could be modified by treatment with Boc5, strongly suggesting the pseudo-esterase activity of albumin. Studies on species differences in this albumin-mediated metabolism showed large species differences in degradation rate of Boc5, the half lives of Boc5 in plasma from three various species varied from 23.5 h to 83.1 h, but they were much closed to the half lives of Boc5 in corresponding serum albumins, implying the predominant role of serum albumin in plasma metabolism of Boc5. Additionally, the effects of various ligands including fatty acids and several drugs with unambiguous binding sites on HSA, on the pseudo-esterase activity of HSA, were also investigated using both experimental and molecular modelling studies. These results showed that the binding of various ligands to HSA could significantly affect the pseudo-esterase activity of HSA towards Boc5, due to the ligand-induced conformation changes of HSA.
    European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences 12/2012; DOI:10.1016/j.ejps.2012.11.011 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent alteration of protein conformation due to interaction with isoflurane may be a novel molecular aspect of preconditioning. We preincubated human serum albumin with isoflurane, dialyzed to release agent, and assessed protein conformation. Susceptibility to chemical modification by methylglyoxal and nitrophenylacetate was also examined. Isoflurane had a persistent effect on protein conformation. An increase in the susceptibility of surface residues to chemical modification attended this change in conformation. Modification of isoflurane-treated HSA included intra- and intersubunit cross-linking that may be a consequence of anesthetic-induced changes in multimeric subpopulations. This irreversible effect of isoflurane may represent a mechanism for preconditioning.
    09/2011; 2011:739712. DOI:10.1155/2011/739712