Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement.

Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
Journal of Investigative Dermatology (Impact Factor: 6.19). 07/2008; 128(12):2880-7. DOI: 10.1038/jid.2008.169
Source: PubMed

ABSTRACT Whereas high-dose ultraviolet B (UVB) is detrimental to the epidermal permeability barrier, suberythemal doses of UVB are used to treat atopic dermatitis (AD), which is characterized by defective permeability barrier and antimicrobial function. As epidermal permeability barrier and antimicrobial peptide (AMP) expression are coregulated and interdependent functions, we hypothesized that suberythemal doses of UVB exposure could regulate AMP expression in parallel with permeability barrier function. Hairless mice were exposed to 40 mJ cm(-2) UVB (about 1/2 minimal erythema dose) daily for 1 or 3 days. Twenty-four hours after the last exposure, epidermal barrier function was assessed and skin specimens were taken for western blotting, immunohistochemistry, and quantitative reverse transcription-PCR for mouse beta-defensin (mBD)-2, mBD3 and cathelin-related antimicrobial peptide (CRAMP). mRNA levels of the vitamin D receptor (VDR), 1alpha-hydroxylase and key epidermal lipid synthetic enzymes were also quantified. After 3 days of UVB exposure, acceleration of barrier recovery and augmentation in expression of epidermal differentiation markers (for example, involucrin and filaggrin) occurred in parallel with increased mBD2, mBD3, and CRAMP expression at both the mRNA and protein level. VDR, 1alpha-hydroxylase, and the major epidermal lipid synthetic enzymes were also upregulated. When an inhibitor of 1alpha, 25 dihydroxyvitamin D(3) formation, ketoconazole, was applied immediately after UVB exposure, the cutaneous vitamin D system was inhibited, which in turn blocked epidermal lipid synthesis, AMP expression, and permeability barrier homeostasis, suggesting that the beneficial effect of low-dose UVB depends, at least in part, on activation of the cutaneous vitamin D system. Our results provide new insights into the mechanisms whereby low-dose UVB comprises effective therapy for AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis (AD) is a multifactorial inflammatory skin disease perpetuated by gene-environmental interactions and which is characterized by genetic barrier defects and allergic inflammation. Recent studies demonstrate an important role for the epidermal permeability barrier in AD that is closely related to chronic immune activation in the skin during systemic allergic reactions. Moreover, acquired stressors (e.g., Staphylococcus aureus infection) to the skin barrier may also initiate inflammation in AD. Many studies involving patients with AD revealed that defective skin barriers combined with abnormal immune responses might contribute to the pathophysiology of AD, supporting the outside-inside hypothesis. In this review, we discuss the recent advances in human and animal models, focusing on the defects of the epidermal permeability barrier, its immunologic role and barrier repair therapy in AD.
    Allergy, asthma & immunology research 07/2014; 6(4):276-87. · 3.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells' ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.
    Cell cycle (Georgetown, Tex.) 12/2014; 13(24):3839-56. · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: UV radiation poses a significant risk to human health. The mechanisms that help repair UV-damaged cells have recently been more clearly defined with the observation that Toll-like receptor 3 can sense self RNA released from necrotic keratinocytes following UV damage. TLR3 activation in the skin induces inflammation and increases the expression of genes involved in skin barrier repair. Activation of TLR2 in the skin by commensal microbial products prevents excessive inflammation by blocking downstream TLR3 signaling. This review highlights how UV damage-induced inflammation in the skin is propagated by host products and regulated by host inhabitants.Journal of Investigative Dermatology advance online publication, 1 May 2014; doi:10.1038/jid.2014.167.
    Journal of Investigative Dermatology 05/2014; · 6.19 Impact Factor