Article

Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement.

Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
Journal of Investigative Dermatology (Impact Factor: 6.19). 07/2008; 128(12):2880-7. DOI: 10.1038/jid.2008.169
Source: PubMed

ABSTRACT Whereas high-dose ultraviolet B (UVB) is detrimental to the epidermal permeability barrier, suberythemal doses of UVB are used to treat atopic dermatitis (AD), which is characterized by defective permeability barrier and antimicrobial function. As epidermal permeability barrier and antimicrobial peptide (AMP) expression are coregulated and interdependent functions, we hypothesized that suberythemal doses of UVB exposure could regulate AMP expression in parallel with permeability barrier function. Hairless mice were exposed to 40 mJ cm(-2) UVB (about 1/2 minimal erythema dose) daily for 1 or 3 days. Twenty-four hours after the last exposure, epidermal barrier function was assessed and skin specimens were taken for western blotting, immunohistochemistry, and quantitative reverse transcription-PCR for mouse beta-defensin (mBD)-2, mBD3 and cathelin-related antimicrobial peptide (CRAMP). mRNA levels of the vitamin D receptor (VDR), 1alpha-hydroxylase and key epidermal lipid synthetic enzymes were also quantified. After 3 days of UVB exposure, acceleration of barrier recovery and augmentation in expression of epidermal differentiation markers (for example, involucrin and filaggrin) occurred in parallel with increased mBD2, mBD3, and CRAMP expression at both the mRNA and protein level. VDR, 1alpha-hydroxylase, and the major epidermal lipid synthetic enzymes were also upregulated. When an inhibitor of 1alpha, 25 dihydroxyvitamin D(3) formation, ketoconazole, was applied immediately after UVB exposure, the cutaneous vitamin D system was inhibited, which in turn blocked epidermal lipid synthesis, AMP expression, and permeability barrier homeostasis, suggesting that the beneficial effect of low-dose UVB depends, at least in part, on activation of the cutaneous vitamin D system. Our results provide new insights into the mechanisms whereby low-dose UVB comprises effective therapy for AD.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells' ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.
    Cell cycle (Georgetown, Tex.) 12/2014; 13(24):3839-56. DOI:10.4161/15384101.2014.967070 · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis (AD) is a multifactorial inflammatory skin disease perpetuated by gene-environmental interactions and which is characterized by genetic barrier defects and allergic inflammation. Recent studies demonstrate an important role for the epidermal permeability barrier in AD that is closely related to chronic immune activation in the skin during systemic allergic reactions. Moreover, acquired stressors (e.g., Staphylococcus aureus infection) to the skin barrier may also initiate inflammation in AD. Many studies involving patients with AD revealed that defective skin barriers combined with abnormal immune responses might contribute to the pathophysiology of AD, supporting the outside-inside hypothesis. In this review, we discuss the recent advances in human and animal models, focusing on the defects of the epidermal permeability barrier, its immunologic role and barrier repair therapy in AD.
    Allergy, asthma & immunology research 07/2014; 6(4):276-87. DOI:10.4168/aair.2014.6.4.276 · 3.08 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to determine the effect of UV radiation on β-defensin 3 (BD3) expression in human skin, freshly-isolated UV-naïve skin was obtained from newborn male infants undergoing planned circumcision. Skin explants sustained ex vivo dermis side down on RPMI media were exposed to 0.5 kJ/m (2) UVB, and biopsies were taken from the explant through 72 hours after radiation. mRNA expression was measured by qRTPCR and normalized to TATA-binding protein. BD3 expression at each time point was compared with an untreated control taken at time 0 within each skin sample. Extensive variability in both the timing and magnitude of BD3 induction across individuals was noted and was not predicted by skin pigment phenotype, suggesting that BD3 induction was not influenced by epidermal melanization. However, a mock-irradiated time course demonstrated UV-independent BD3 mRNA increases across multiple donors which was not further augmented by treatment with UV radiation, suggesting that factors other than UV damage promoted increased BD3 expression in the skin explants. We conclude that BD3 expression is induced in a UV-independent manner in human skin explants processed and maintained in standard culture conditions, and that neonatal skin explants are an inappropriate model with which to study the effects of UV on BD3 induction in whole human skin.