Novel role for RGS1 in melanoma progression.

Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, UCSF Comprehensive Cancer Center, Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA.
The American journal of surgical pathology (Impact Factor: 4.59). 06/2008; 32(8):1207-12. DOI: 10.1097/PAS.0b013e31816fd53c
Source: PubMed

ABSTRACT RGS1 (regulator of G protein signaling 1) encodes a member of the regulator of G protein family. Recently, RGS1 was found to be overexpressed in gene expression-profiling studies of melanoma. However, no analyses have been reported of its expression at the protein level in melanoma. In this study, the potential impact of RGS1 as a molecular prognostic marker for melanoma was assessed using immunohistochemical analysis of a melanoma tissue microarray containing primary cutaneous melanomas from 301 patients. High RGS1 expression was significantly correlated with increased tumor thickness (P=0.0083), mitotic rate (P=0.04), and presence of vascular involvement (P<0.02). Kaplan-Meier analysis demonstrated a significant association between increasing RGS1 expression and reduced relapse-free survival (P=0.0032) as well as disease-specific survival (DSS) (P=0.018) survival. Logistic regression analysis showed RGS1 overexpression to be significantly correlated to sentinel lymph node metastasis (P=0.04). Multivariate Cox regression analysis showed that increasing RGS1 immunostaining had an independent impact on the relapse-free survival (P=0.0069) and DSS (P=0.0077) of this melanoma cohort. In the analysis of DSS, RGS1 expression level was the most powerful factor predicting DSS. RGS1 immunostaining retained independent prognostic impact even when sentinel lymph node status was included in the prognostic model (P=0.0039). These results validate the role of RGS1 as a novel prognostic marker for melanoma given its impact on the survival associated with melanoma.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulator of G-protein signaling (RGS) family is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). In recent years, GPCRs have been linked to the initiation and progression of multiple cancers; thus, regulators of GPCR signaling are also likely to be important to the pathophysiology of cancer. This review highlights recent studies detailing changes in RGS transcript expression during oncogenesis, single nucleotide polymorphisms in RGS proteins linked to lung and bladder cancers, and specific roles for RGS proteins in multiple cancer types.
    Biochemical pharmacology 07/2009; 78(10):1289-97. DOI:10.1016/j.bcp.2009.06.028 · 4.65 Impact Factor
  • Article: Rgs1
    AfCS-Nature Molecule Pages 01/2009; DOI:10.1038/mp.a002040.01
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified RGS17 as a commonly induced gene in lung and prostate tumors. Through microarray and gene expression analysis, we show that expression of RGS17 is up-regulated in 80% of lung tumors, and also up-regulated in prostate tumors. Through knockdown and overexpression of RGS17 in tumor cells, we show that RGS17 confers a proliferative phenotype and is required for the maintenance of the proliferative potential of tumor cells. We show through exon microarray, transcript analysis, and functional assays that RGS17 promotes cyclic AMP (cAMP)-responsive element binding protein (CREB)-responsive gene expression, increases cAMP levels, and enhances forskolin-mediated cAMP production. Furthermore, inhibition of cAMP-dependent kinase prevents tumor cell proliferation, and proliferation is partially rescued by RGS17 overexpression. In the present study, we show a role for RGS17 in the maintenance of tumor cell proliferation through induction of cAMP signaling and CREB phosphorylation. The prevalence of the induction of RGS17 in tumor tissues of various types further implicates its importance in the maintenance of tumor growth.
    Cancer Research 03/2009; 69(5):2108-16. DOI:10.1158/0008-5472.CAN-08-3495 · 9.28 Impact Factor