Gastric bypass surgery in rats produces weight loss modeling after human gastric bypass.

Section of Minimally Invasive Surgery, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, 910 Madison Ave., Suite 208, Memphis, TN, 38163, USA.
Obesity Surgery (Impact Factor: 3.74). 07/2008; 18(10):1246-50. DOI: 10.1007/s11695-008-9556-1
Source: PubMed

ABSTRACT The study of the mechanisms of weight loss after bariatric surgery requires an animal model that mimics the human procedure and subsequent weight loss. A rat model eliminates the cognitive efforts associated with human weight loss and gain.
A technique for gastric bypass (Roux-en-Y gastric bypass [RYGB]) was developed in Sprague-Dawley rats. A 1- to 2-cc pouch is created from the uppermost stomach using a linear stapler. A 10-cm biliopancreatic limb and 15-cm Roux limb are anastomosed side to side with running nonabsorbable suture. The gastrojejunostomy is created with a single layer of running nonabsorbable suture. Four rats underwent RYGB. Weight loss was compared to four sham rats that had a midline incision and left 60 min with an open abdomen before closure.
RYGB rats lost an average of 16.5% body weight (BW) at 1 week, 22% BW at 2 weeks, 20% BW at 3 weeks, and 11% BW at 4 weeks. The RYGB rat's weight was basically level after 4 weeks. The shams lost an average of 4% BW at 1 week, 1% BW at 2 weeks, and 0% BW at 3 weeks and gained an average of 2% at weeks. Subjectively, the RYGB rats were less interested in chow and frequently had chow left in their cage.
A Sprague-Dawley rat model for gastric bypass has been developed and yields approximately 11% BW loss. This will allow investigators to objectively view factors associated with weight loss without the confounding cognitive factors in humans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is an important risk factor for type 2 diabetes mellitus (T2DM). Weight loss improves the major factors involved in the pathogenesis of T2DM, namely insulin action and beta cell function, and is considered a primary therapy for obese patients who have T2DM. Unfortunately, most patients with T2DM fail to achieve successful weight loss and adequate glycemic control from medical therapy. In contrast, bariatric surgery causes marked weight loss and complete remission of T2DM in most patients. Moreover, bariatric surgical procedures that divert nutrients away from the upper gastrointestinal tract are more successful in producing weight loss and remission of T2DM than those that simply restrict stomach capacity. Although upper gastrointestinal tract bypass procedures alter the metabolic response to meal ingestion, by increasing early postprandial plasma concentrations of glucagon-like peptide 1 and insulin, it is not clear whether these effects make an important contribution to long-term control of glycemia and T2DM once substantial surgery-induced weight loss has occurred. Nonetheless, the effects of surgery on body weight and metabolic function indicate that bariatric surgery should be part of the standard therapy for T2DM. More research is needed to advance our understanding of the physiological effects of different bariatric surgical procedures and possible weight loss-independent factors that improve metabolic function and contribute to the resolution of T2DM.
    Gastroenterology 08/2012; 143(4):897-912. · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies using gastric bypass rat models have been recently conducted to uncover underlying physiological mechanisms of Roux-en-Y gastric bypass. Reflecting on lessons learned from gastric bypass rat models may thus aid the development of gastric bypass models in mice and other species. This review aims to discuss technical and experimental details of published gastric bypass rat models to understand advantages and limitations of this experimental tool. The review is based on PubMed literature using the search terms 'animal model', 'rodent model', 'bariatric surgery', 'gastric bypass', and 'Roux-en-Y gastric bypass'. All studies published up until February 2011 were included. 32 studies describing 15 different rat gastric bypass models were included. Description of surgical technique differs in terms of pouch size, limb lengths, preservation of the vagal nerve, and mortality rate. Surgery was carried out exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate comparison and identification of potential physiological mechanisms involved in gastric bypass. In summary, there is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data.
    Obesity Facts 01/2011; 4 Suppl 1:3-12. · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) on obesity and obesity-related diseases is unquestionable. Up to now, the technical descriptions of these techniques in animals/rats have not been very comprehensive. For SG and RYGB, operating time, learning curve, and intraoperative mortality in relation to weight of the rat and type of anesthesia were recorded. Furthermore, a review of the literature on experimental approaches towards SG and RYGB in rats was carried out, merging in a detailed technical description for both procedures. The data presented here revealed that the mean operating time for SG (69.4 ± 22.2 min (SD)) was shorter than for RYGB (123.0 ± 20.7 min). There is a learning curve for both procedures, resulting in a reduced operating time of up to 60% in SG and 35% in RYGB (p < 0.05; t-test). However, with increased weight, operating time increases to about 80 min for SG and about 120 min for RYGB. Obese rats have an increased intraoperative mortality rate of up to 50%. After gaseous anesthesia the mortality can be even higher. The literature search revealed 40 papers dealing with SG and RYGB in rats. 18 articles (45%) contained neither photographs nor illustrations; 14 articles (35%) did not mention the applied type of anesthesia. The mortality rate was described in 15 papers (37.5%). Experimental obesity surgery in rats is challenging. Because of the high mortality in obese rats operated under gaseous anesthesia, exercises to establish the techniques should be performed in small rats using intraperitoneal anesthesia.
    Obesity Facts 06/2012; 5(3):359-71. · 1.58 Impact Factor