Article

Accelerated sequence divergence of conserved genomic elements in Drosophila melanogaster.

Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95691, USA.
Genome Research (Impact Factor: 14.4). 07/2008; 18(10):1592-601. DOI: 10.1101/gr.077131.108
Source: PubMed

ABSTRACT Recent genomic sequencing of 10 additional Drosophila genomes provides a rich resource for comparative genomics analyses aimed at understanding the similarities and differences between species and between Drosophila and mammals. Using a phylogenetic approach, we identified 64 genomic elements that have been highly conserved over most of the Drosophila tree, but that have experienced a recent burst of evolution along the Drosophila melanogaster lineage. Compared to similarly defined elements in humans, these regions of rapid lineage-specific evolution in Drosophila differ dramatically in location, mechanism of evolution, and functional properties of associated genes. Notably, the majority reside in protein-coding regions and primarily result from rapid adaptive synonymous site evolution. In fact, adaptive evolution appears to be driving substitutions to unpreferred codons. Our analysis also highlights interesting noncoding genomic regions, such as regulatory regions in the gene gooseberry-neuro and a putative novel miRNA.

0 Bookmarks
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vast tracts of noncoding DNA contain elements that regulate gene expression in higher eukaryotes. Describing these regulatory elements and understanding how they evolve represent major challenges for biologists. Advances in the ability to survey genome-scale DNA sequence data are providing unprecedented opportunities to use evolutionary models and computational tools to identify functionally important elements and the mode of selection acting on them in multiple species. This chapter reviews some of the current methods that have been developed and applied on noncoding DNA, what they have shown us, and how they are limited. Results of several recent studies reveal that a significantly larger fraction of noncoding DNA in eukaryotic organisms is likely to be functional than previously believed, implying that the functional annotation of most noncoding DNA in these organisms is largely incomplete. In Drosophila, recent studies have further suggested that a large fraction of noncoding DNA divergence observed between species may be the product of recurrent adaptive substitution. Similar studies in humans have revealed a more complex pattern, with signatures of recurrent positive selection being largely concentrated in conserved noncoding DNA elements. Understanding these patterns and the extent to which they generalize to other organisms awaits the analysis of forthcoming genome-scale polymorphism and divergence data from more species.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 856:141-59. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PHylogenetic Analysis with Space/Time models (PHAST) software package consists of a collection of command-line programs and supporting libraries for comparative genomics. PHAST is best known as the engine behind the Conservation tracks in the University of California, Santa Cruz (UCSC) Genome Browser. However, it also includes several other tools for phylogenetic modeling and functional element identification, as well as utilities for manipulating alignments, trees and genomic annotations. PHAST has been in development since 2002 and has now been downloaded more than 1000 times, but so far it has been released only as provisional ('beta') software. Here, we describe the first official release (v1.0) of PHAST, with improved stability, portability and documentation and several new features. We outline the components of the package and detail recent improvements. In addition, we introduce a new interface to the PHAST libraries from the R statistical computing environment, called RPHAST, and illustrate its use in a series of vignettes. We demonstrate that RPHAST can be particularly useful in applications involving both large-scale phylogenomics and complex statistical analyses. The R interface also makes the PHAST libraries acccessible to non-C programmers, and is useful for rapid prototyping. PHAST v1.0 and RPHAST v1.0 are available for download at http://compgen.bscb.cornell.edu/phast, under the terms of an unrestrictive BSD-style license. RPHAST can also be obtained from the Comprehensive R Archive Network (CRAN; http://cran.r-project.org).
    Briefings in Bioinformatics 01/2011; 12(1):41-51. · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human accelerated regions (HARs) are DNA sequences that changed very little throughout mammalian evolution, but then experienced a burst of changes in humans since divergence from chimpanzees. This unexpected evolutionary signature is suggestive of deeply conserved function that was lost or changed on the human lineage. Since their discovery, the actual roles of HARs in human evolution have remained somewhat elusive, due to their being almost exclusively non-coding sequences with no annotation. Ongoing research is beginning to crack this problem by leveraging new genome sequences, functional genomics data, computational approaches, and genetic assays to reveal that many HARs are developmental gene regulatory elements and RNA genes, most of which evolved their uniquely human mutations through positive selection before divergence of archaic hominins and diversification of modern humans.
    Current Opinion in Genetics & Development. 01/2014; 29:15–21.

Full-text

View
0 Downloads
Available from