DNA interaction studies and evaluation of biological activity of homo- and hetero-trihalide mononuclear Cu(II) Schiff base complexes. Quantitative structure-activity relationships.

Department of Chemistry, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Journal of inorganic biochemistry (Impact Factor: 3.25). 06/2008; 102(9):1749-64. DOI: 10.1016/j.jinorgbio.2008.05.005
Source: PubMed

ABSTRACT A new series of mixed-ligand mono- or hetero-trihalide Cu(II) complexes of the type [Cu(dienXX)Y(YZ(2))], where dienXX=Schiff dibase of diethylenetriamine with 2-thiophene-carboxaldehyde (dienSS), 2-furaldehyde (dienOO) or 2-pyrrole-2-carboxaldehyde (dienNN), Y=Cl, Br and Z=Br, I was synthesized by the reaction of the precursors of the type [Cu(dienXX)Y]Y with iodine or bromine in 1:1 molar ratio. The distorted square pyramidal configuration of the new homo- and hetero-trihalide Cu(II) mononuclear complexes was identified by C, H, N, Cu analysis, spectroscopic methods (IR, UV-visible), molar conductivity and magnetic measurements. The basal plane consists of three nitrogen atoms of the Schiff base and one halogen (terminal) atom while another axially located trihalogen moiety occupies the fifth side of the square pyramid as a YZ(2) entity, adopting an almost linear configuration. The equilibrium geometry of these complexes was further corroborated by theoretical studies at the B3LYP/DGDZVP level. A series of quantum chemical descriptors (e.g. SOMO (singly occupied molecular orbital) LUMO (lowest occupied molecular orbital), SOMO and LUMO energies, SOMO-LUMO gap, dipole moment, polarizability, molar volume, etc.) have been utilized in order to deduce quantitative structure-activity relationships (QSARs). The effect of the new compounds on the single stranded (ss), double stranded (ds) and pDNA led either to the formation of a DNA-complex cationic adduct, or to its degradation, evidenced by DNA electrophoretic mobility and DNA interaction spectroscopic titration studies. Moreover, the antimicrobial activity of Cu(II) complexes against Gram(+) and Gram(-) bacteria can be attributed to the synergistic action of the dissociation species, namely the cationic [Cu(dienXX)Y](+) and anionic [YZ(2)](-) ones. Finally, de Novo linear regression analysis correlating the bioactivity of these complexes with their structural substituents has been carried out, leading to some interesting qualitative observations/conclusions.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of complexes of type [ML(CH 3 COO)(OH 2) 2 ] (M: Co, Ni; HL: 2-[(E)-1H-1,2,4-triazol-3-ylimino)methyl]phenol)) and [M 2 L 2 (CH 3 COO) 2 (OH 2) n ] (M: Cu, n = 2; M: Zn, n = 0) were synthesised by tem-plate condensation. The compounds were characterised with microanalytical, ESI–MS, IR, electronic, EPR spectra and magnetic data at room temperature. Based on the IR and ESI–MS spectra, a dinuclear structure with the acetate as bridge was proposed for Cu(II) and Zn(II) complexes. The dinuclear structure of Cu(II) complex is also consistent with both magnetic behaviour and EPR spectrum. The thermal analyses have evidenced processes as water elim-ination, acetate decomposition, as well as oxidative deg-radation of the Schiff base. The final decomposition product was the most stable metal oxide as indicated by powder X-ray diffraction. The cobalt and copper com-pounds exhibited a broad spectrum of antibacterial activity towards both planktonic and biofilm-embedded cells. The complexes exhibit a low cytotoxicity except for Cu(II) species that induces the early apoptosis for the HEp 2 cells.
    Journal of Thermal Analysis and Calorimetry 01/2014; · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, new Fe(II) Schiff base amino acid chelates derived from the condensation of o-hydroxynaphthaldehyde with l-alanine, l-phenylalanine, l-aspartic acid, l-histidine and l-arginine were synthesized and characterized via elemental, thermogravimetric analysis, molar conductance, IR, electronic, mass spectra and magnetic moment measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. Correlation of all spectroscopic data suggested that Schiff bases ligands exhibited tridentate with ONO sites coordinating to the metal ions via protonated phenolic-OH, azomethine-N and carboxylate-O with the general formulae [Fe(HL)2]·nH2O. But in case of l-histidine, the ligand acts as tetradentate via deprotonated phenolic-OH, azomethine-N, carboxylate-O and N-imidazole ring ([FeL(H2O)2]·2H2O), where HL=mono anion and L=dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their teratogenicity on chick embryos and found to be safe until a concentration of 100μg/egg with full embryos formation. Moreover, the interaction between CT-DNA and the investigated complexes were followed by spectrophotometric and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA activity with the sequence: nhi>nari>nali>nasi>nphali. Furthermore, the free ligands and their complexes are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium in order to assess their antimicrobial potential. The results show that the metal complexes are more reactive with respect to their corresponding Schiff base amino acid ligands.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 04/2013; 111C:266-276. · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (l-alanine (ala), l-phenylalanine (phala), l-aspartic acid (aspa), l-histidine (his) and l-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]⋅nH2O. The conductivity values between 37 and 64ohm(-1)mol(-1)cm(2) in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH=7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari>bshi>bsali>bsasi>bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency than their corresponding Schiff base amino acid ligands.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 08/2013; 117C:366-378. · 1.98 Impact Factor