Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation.

Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles 90095-7334, USA.
NeuroImage (Impact Factor: 6.13). 07/2008; 42(4):1678-85. DOI: 10.1016/j.neuroimage.2008.05.057
Source: PubMed

ABSTRACT Development of working memory (WM) aptitude parallels structural changes in the frontal-parietal association cortices important for performance within this cognitive domain. The cerebellum has been proposed to function in support of the postulated phonological loop component of verbal WM, and along with frontal and parietal cortices, has been shown to exhibit linear WM load-dependent activation in adults. It is not known if these kinds of WM load-dependent relationships exist for cerebro-cerebellar networks in developmental populations, and whether there are age-related changes in the nature of load-dependency between childhood, adolescence, and adulthood. The present study used fMRI and a verbal Sternberg WM task with three load levels to investigate developmental changes in WM load-dependent cerebro-cerebellar activation in a sample of 30 children, adolescents, and young adults between the ages of 7 and 28. The neural substrates of linear load-dependency were found to change with age. Among adolescents and adults, frontal, parietal and cerebellar regions showed linear load-dependency, or increasing activation under conditions of increasing WM load. In contrast, children recruited only left ventral prefrontal cortex in response to increasing WM load. These results demonstrate that, while children, adolescents, and young adults activate similar cerebro-cerebellar verbal working memory networks, the extent to which they rely on parietal and cerebellar regions in response to increasing task difficulty changes significantly between childhood and adolescence.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is considered a neurodevelopmental disorder, but whether the adolescent period, proximal to onset, is associated with aberrant development in individuals at clinical high risk (CHR) for psychosis is incompletely understood. While abnormal gray and white matter development has been observed, alterations in functional neuroimaging (fMRI) parameters during adolescence as related to conversion to psychosis have not yet been investigated. Twenty CHR individuals and 19 typically developing controls (TDC), (ages 14-21), were recruited from the Center for Assessment and Prevention of Prodromal States (CAPPS) at UCLA. Participants performed a Sternberg-style verbal working memory (WMem) task during fMRI and data were analyzed using a cross-sectional design to test the hypothesis that there is a deviant developmental trajectory in WMem associated neural circuitry in those at risk for psychosis. Eight of the CHR adolescents converted to psychosis within 2 years of initial assessment. A voxel-wise regression examining the relationship between age and activation revealed a significant group-by-age interaction. TDC showed a negative association between age and functional activation in the WMem circuitry while CHR adolescents showed a positive association. Moreover, CHR patients who later converted to overt psychosis showed a distinct pattern of abnormal age-associated activation in the frontal cortex relative to controls, while non-converters showed a more diffuse posterior pattern. Finding that age related variation in baseline patterns of neural activity differentiate individuals who subsequently convert to psychosis from healthy subjects suggests that these differences are likely to be clinically relevant.
    10/2013; DOI:10.1016/j.pscychresns.2013.08.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Dysthymic disorder (DD) is a depressive disorder characterised by persistent low and/or irritable mood and has been identified as a major risk factor for developing major depressive disorder (MDD). MDD and DD have been associated with executive function difficulties of working memory and attention. Little is known about how executive function networks in the brain are affected in children and adolescents with MDD and even less in DD. This study used fMRI and two spatial working memory paradigms to investigate associated brain function in young people with DD and an age-, gender- and IQ- matched typically developing group. Methods Nineteen male patients with DD (mean age 11.2±1.5 years) diagnosed according to DSM-IV criteria and 16 typically developing boys (mean age 10.5±1.1 years) performed a mental rotation and a delay-match to sample (DMTS) task while undergoing fMRI. All participants were medication-naïve at the time of testing. Results Compared to typically developing young people, the DD group showed less activation in left frontal regions including left ventro- and dorsolateral prefrontal cortices (PFC) during mental rotation. Medial frontal regions including dorsomedial PFC, anterior cingulate cortex and frontal pole also showed relatively reduced activation. During the DMTS task patients showed significantly more activation in the right precuneus and posterior cingulate cortex. Limitations This was a cross-sectional study with a small sample limiting the generalizability of the results. Conclusions The results complement previous findings in adults with MDD that have shown differential activation of left PFC regions during working memory tasks. Additionally, altered function of cortical midline structures in young patients with DD was identified. This supports findings in children, adolescents and adults with MDD suggesting that the pathophysiology of depressive disorders extends to DD as a risk factor for MDD and exhibits continuity over the lifespan.
    Journal of Affective Disorders 05/2014; 160:34–42. DOI:10.1016/j.jad.2014.01.024 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives We hypothesize that time perception and executive functions are interrelated and share neuroanatomical basis, and that fluctuations in levels of cognitive effort play a role in mediating that relation. The main goal of this study was to identify brain structures activated both by increases in cognitive activity and during time perception tasks. Methods We performed a multimodal meta-analysis to identify common brain regions in the findings of (a) an SDM meta-analysis of neuroimaging studies assessing the brain response to increasing levels of cognitive difficulty, and (b) an ALE meta-analysis on neuroimaging of time perception (Ortuño, Guillén-Grima, López-García, Gómez, & Pla, 2011). Results and conclusions Consistent with results of previous, separate meta-analyses, the current study supports the hypothesis that there exists a group of brain regions engaged both in time perception tasks and during tasks requiring cognitive effort. Thus, brain regions associated with working memory and executive functions were found to be engaged during time estimation tasks, and regions associated with time perception were found to be engaged by an increase in the difficulty of non-temporal tasks. The implication is that temporal perception and cognitive processes demanding cognitive control become interlinked when there is an increase in the level of cognitive effort demanded.
    Neuropsychologia 05/2014; DOI:10.1016/j.neuropsychologia.2014.03.016 · 3.45 Impact Factor


1 Download
Available from