Article

Repetitive organic dust exposure in vitro impairs macrophage differentiation and function

Pulmonary, Critical Care, Sleep and Allergy Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb 68198-5300, USA.
The Journal of allergy and clinical immunology (Impact Factor: 11.25). 06/2008; 122(2):375-82, 382.e1-4. DOI: 10.1016/j.jaci.2008.05.023
Source: PubMed

ABSTRACT Organic dust exposure in the agricultural industry results in significant airway disease and lung function decrease. Mononuclear phagocytes are key cells that mediate the inflammatory and innate immune response after dust exposure.
We sought to investigate the effect of organic dust extract (ODE) from modern swine operations on monocyte-derived macrophage (MDM) phenotype and function.
Peripheral blood monocytes were obtained by means of elutriation methodology (>99% CD14(+)) and differentiated into macrophages in the presence of GM-CSF (1 week) with and without ODE (0.1%). At 1 week, cells were analyzed by means of flow cytometry for cell-surface marker expression (HLA-DR, CD80, CD86, Toll-like receptor 2, Toll-like receptor 4, mCD14, and CD16), phagocytosis (IgG-opsonized zymosan particles), and intracellular killing of Streptococcus pneumoniae. At 1 week, MDMs were rechallenged with high-dose ODE (1%), LPS, and peptidoglycan (PGN), and cytokine levels (TNF-alpha, IL-6, IL-10, and CXCL8/IL-8) were measured. Comparisons were made to MDMs conditioned with heat-inactivated dust, endotoxin-depleted dust, LPS, and PGN to elucidate ODE-associated factors.
Expression of HLA-DR, CD80, and CD86; phagocytosis; and intracellular bacterial killing were significantly decreased with ODE-challenged versus control MDMs. Responses were retained after marked depletion of endotoxin. PGN, LPS, and PGN plus LPS significantly reduced MDM surface marker expression and, except for LPS alone, also reduced phagocytosis. ODE-challenged MDMs had significantly diminished cytokine responses (TNF-alpha, IL-6, and IL-10) after repeat challenge with high-dose ODE. Cross-tolerant cytokine responses were also observed.
Repetitive organic dust exposure significantly decreases markers of antigen presentation and host defense function in MDMs. Bacterial cell components appear to be driving these impaired responses.

Download full-text

Full-text

Available from: Diane Allen-Gipson, Aug 12, 2015
0 Followers
 · 
118 Views
  • Source
    • "Advances into understanding specific causative factors determined that PM size is important, with coarse PM inducing enhanced inflammation (Vogel et al., 2012). Endotoxin, signaling through TLR4 (Charavaryamath et al., 2008), remains an important causative agent, but recent studies show important roles for gram-positive bacteria (Nehme et al., 2009; Poole et al., 2008, 2010) and for targeting the TLR2 pathway. "
    [Show abstract] [Hide abstract]
    ABSTRACT: With increases in large animal-feeding operations to meet consumer demand, adverse upper and lower respiratory health effects in exposed agriculture workers are a concern. The aim of this study was to review large animal confinement feeding operational exposures associated with respiratory disease with a focus on recent advances in the knowledge of causative factors and cellular and immunological mechanisms. A PubMed search was conducted with the keywords airway, farm, swine, dairy, horse, cattle inflammation, organic dust, endotoxin, and peptidoglycan, among items were published between 1980 and now. Articles were selected based on their relevance to environmental exposure and reference to airway diseases. Airway diseases included rhinitis, sinusitis, mucus membrane inflammation syndrome, asthma, chronic bronchitis, chronic obstructive pulmonary disease, hypersensitivity pneumonitis, and organic dust toxic syndrome. There is lower prevalence of immunoglobulin (Ig) E-mediated asthma and atopy in farmers and their children, but organic dust worsens existing asthma. Multiple etiologic factors are linked to disease, including allergens, organic dusts, endotoxins, peptidoglycans, and gases. Large animal confinement feeding operations contain a wide diversity of microbes with increasing focus on gram-positive bacteria and archaebacteria as opposed to gram-negative bacteria in mediating disease. Toll-like receptors (TLR) and nucleotide oligomerization domain (NOD)-like innate immune pathways respond to these exposures. Finally, a chronic inflammatory adaptation, tolerance-like response in chronically exposed workers occurs. Large animal confinement farming exposures produce a wide spectrum of upper and lower respiratory tract diseases due to the complex diversity of organic dust, particulates, microbial cell wall components, and gases and resultant activation of various innate immune receptor signaling pathways.
    Journal of Toxicology and Environmental Health Part B 11/2012; 15(8):524-41. DOI:10.1080/10937404.2012.744288 · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern, industrialized farming practices have lead to working conditions that include high levels of airborne dust. Agricultural workers inhale these complex organic dusts on a daily basis, leading to airway inflammation and higher risk for developing chronic obstructive pulmonary disease. The mechanisms regulating the organic dust-induced airway inflammatory response are not well-defined. We investigated whether overexpression of dimethylarginine dimethylaminohydrolase (DDAH) would lead to diminished pulmonary inflammation in an animal model of organic dust extract exposure. We instilled wild-type (WT) and DDAH overexpressing mice with an aqueous organic dust extract (ODE) collected from a swine confinement building. We found that inflammatory indices such as neutrophil influx and inflammatory cytokine production was lower in the DDAH overexpressing mice compared to WT after organic dust extract (ODE) instillation. We went on to determine how DDAH was mediating the decrease in inflammation induced by ODE. PKCα and PKCε play an essential role in the ODE inflammatory response. In a model of lung slices from WT and DDAH overexpressing mice, we demonstrated an increase in PKCα and PKCε in the WT mice exposed to ODE. This increase was diminished in the DDAH overexpressing mice exposed to ODE. We also tested an important component of the ODE, peptidoglycan (PGN). We noted a similar decrease in neutrophils and inflammatory cytokines in the DDAH overexpressing animals instilled with PGN compared to WT. In conclusion, our studies found a role for DDAH in regulating the ODE-triggered activation of epithelial PKCα and PKCε, a previously unrecognized mechanism of action. This ultimately results in diminished pulmonary inflammation.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs. repetitive dust-induced airway inflammation in mice by intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 wk. Dust exposure resulted in increased bronchoalveolar lavage fluid neutrophils and macrophages after single and repetitive exposures. Lavage fluid TNFalpha, IL-6, keratinocyte chemoattractant, and macrophage inflammatory protein-2 were significantly increased after single and repetitive dust exposures, but were dampened in 2-wk dust-exposed mice compared with single exposure. Dust exposure induced PKCalpha and -epsilon activation in isolated tracheal epithelial cells but were dampened with repetitive exposures. Ex vivo stimulation of alveolar macrophages from 2-wk animals demonstrated reduced cytokine responsiveness and phagocytic ability. Significant lung pathology occurred with development of mixed mononuclear cellular aggregates (T and B lymphocytes, phagocytes) after repetitive dust exposure, a novel observation. Airway hyperresponsiveness to methacholine occurred after single dust exposure but resolved after 2 wk. Collectively, intranasal exposure to DE results in significant lung inflammatory and pathological responses marked by a modulated innate immune response to single and repetitive dust exposures that is associated with PKC activity.
    AJP Lung Cellular and Molecular Physiology 05/2009; 296(6):L1085-95. DOI:10.1152/ajplung.90622.2008 · 4.04 Impact Factor
Show more