Article

Repetitive organic dust exposure in vitro impairs macrophage differentiation and function

Pulmonary, Critical Care, Sleep and Allergy Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb 68198-5300, USA.
The Journal of allergy and clinical immunology (Impact Factor: 11.25). 06/2008; 122(2):375-82, 382.e1-4. DOI: 10.1016/j.jaci.2008.05.023
Source: PubMed

ABSTRACT Organic dust exposure in the agricultural industry results in significant airway disease and lung function decrease. Mononuclear phagocytes are key cells that mediate the inflammatory and innate immune response after dust exposure.
We sought to investigate the effect of organic dust extract (ODE) from modern swine operations on monocyte-derived macrophage (MDM) phenotype and function.
Peripheral blood monocytes were obtained by means of elutriation methodology (>99% CD14(+)) and differentiated into macrophages in the presence of GM-CSF (1 week) with and without ODE (0.1%). At 1 week, cells were analyzed by means of flow cytometry for cell-surface marker expression (HLA-DR, CD80, CD86, Toll-like receptor 2, Toll-like receptor 4, mCD14, and CD16), phagocytosis (IgG-opsonized zymosan particles), and intracellular killing of Streptococcus pneumoniae. At 1 week, MDMs were rechallenged with high-dose ODE (1%), LPS, and peptidoglycan (PGN), and cytokine levels (TNF-alpha, IL-6, IL-10, and CXCL8/IL-8) were measured. Comparisons were made to MDMs conditioned with heat-inactivated dust, endotoxin-depleted dust, LPS, and PGN to elucidate ODE-associated factors.
Expression of HLA-DR, CD80, and CD86; phagocytosis; and intracellular bacterial killing were significantly decreased with ODE-challenged versus control MDMs. Responses were retained after marked depletion of endotoxin. PGN, LPS, and PGN plus LPS significantly reduced MDM surface marker expression and, except for LPS alone, also reduced phagocytosis. ODE-challenged MDMs had significantly diminished cytokine responses (TNF-alpha, IL-6, and IL-10) after repeat challenge with high-dose ODE. Cross-tolerant cytokine responses were also observed.
Repetitive organic dust exposure significantly decreases markers of antigen presentation and host defense function in MDMs. Bacterial cell components appear to be driving these impaired responses.

0 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern food animal production is a major contributor to the global economy, owing to advanced intensive indoor production facilities aimed at increasing market readiness and profit. Consequences of these advances are accumulation of dusts, gases, and microbial products that diminish air quality within production facilities. Chronic inhalation exposure contributes to onset and exacerbation of respiratory symptoms and diseases in animals and workers. This article reviews literature regarding constituents of farm animal production facility dusts, animal responses to production building and organic dust exposure, and the effect of chronic inhalation exposure on pulmonary oxidative stress and inflammation. Porcine models of production facility and organic dust exposures reveal striking similarities to observations of human cells, tissues, and clinical data. Oxidative stress plays a key role in mediating respiratory diseases in animals and humans, and enhancement of antioxidant levels through nutritional supplements can improve respiratory health. Pigs are well adapted to the exposures common to swine production buildings and thus serve as excellent models for facility workers. Insight for understanding mechanisms governing organic dust associated respiratory diseases may come from parallel comparisons between farmers and the animals they raise.
    Current Opinion in Allergy and Clinical Immunology 01/2015; DOI:10.1097/ACI.0000000000000143 · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic exposure to farm environments is a risk factor for nonallergic lung disease. In contrast to allergic asthma, in which type 2 helper T cell (Th2) activation is dominant, exposure to farm dust extracts (FDE) induces Th1/Th17 lung inflammation, associated with neutrophil infiltration. Macrophage influx is a common feature of both types of lung inflammation: allergic and nonallergic. However, macrophage functions and phenotypes may vary according to their polarized state, which is dependent on the cytokine environment. In this study, we aimed to characterize and quantify the lung macrophage populations in two established murine models of allergic and nonallergic lung inflammation by means of FACS and immunohistochemistry. We demonstrated that, while in allergic asthma M2-dominant macrophages predominated in the lungs, in nonallergic inflammation M1-dominant macrophages were more prevalent. This was confirmed in vitro using a macrophage cell line, where FDE exerted a direct effect on macrophages, inducing M1-dominant polarization. The polarization of macrophages diverged depending on the exposure and inflammatory status of the tissue. Interfering with this polarization could be a target for treatment of different types of lung inflammation. Copyright © 2014, American Journal of Physiology - Lung Cellular and Molecular Physiology.
    AJP Lung Cellular and Molecular Physiology 12/2014; 308(4):ajplung.00341.2014. DOI:10.1152/ajplung.00341.2014 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern, industrialized farming practices have lead to working conditions that include high levels of airborne dust. Agricultural workers inhale these complex organic dusts on a daily basis, leading to airway inflammation and higher risk for developing chronic obstructive pulmonary disease. The mechanisms regulating the organic dust-induced airway inflammatory response are not well-defined. We investigated whether overexpression of dimethylarginine dimethylaminohydrolase (DDAH) would lead to diminished pulmonary inflammation in an animal model of organic dust extract exposure. We instilled wild-type (WT) and DDAH overexpressing mice with an aqueous organic dust extract (ODE) collected from a swine confinement building. We found that inflammatory indices such as neutrophil influx and inflammatory cytokine production was lower in the DDAH overexpressing mice compared to WT after organic dust extract (ODE) instillation. We went on to determine how DDAH was mediating the decrease in inflammation induced by ODE. PKCα and PKCε play an essential role in the ODE inflammatory response. In a model of lung slices from WT and DDAH overexpressing mice, we demonstrated an increase in PKCα and PKCε in the WT mice exposed to ODE. This increase was diminished in the DDAH overexpressing mice exposed to ODE. We also tested an important component of the ODE, peptidoglycan (PGN). We noted a similar decrease in neutrophils and inflammatory cytokines in the DDAH overexpressing animals instilled with PGN compared to WT. In conclusion, our studies found a role for DDAH in regulating the ODE-triggered activation of epithelial PKCα and PKCε, a previously unrecognized mechanism of action. This ultimately results in diminished pulmonary inflammation.