Article

Maturation of West Nile Virus Modulates Sensitivity to Antibody-Mediated Neutralization

University of California Irvine, United States of America
PLoS Pathogens (Impact Factor: 8.06). 06/2008; 4(5):e1000060. DOI: 10.1371/journal.ppat.1000060
Source: PubMed

ABSTRACT West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.

0 Followers
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses. Copyright © 2015. Published by Elsevier Inc.
    Virology 03/2015; DOI:10.1016/j.virol.2015.03.025 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.
    Nature Immunology 12/2014; 16(5). DOI:10.1038/ni.3058 · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humoral immunity plays an important role in controlling dengue virus (DENV) infection. Anti-bodies (Abs) developed during primary infection protect against subsequent infection with the same dengue serotype, but can enhance disease following secondary infection with a heterologous serotype. A DENV virion has two surface proteins, envelope protein E and (pre)-membrane protein (pr)M, and inefficient cleavage of the prM protein during maturation of progeny virions leads to the secretion of immature and partially immature particles. Interestingly , we and others found that historically regarded non-infectious prM-containing DENV particles can become highly infectious in the presence of E-and prM-Abs. Accordingly , we hypothesized that these virions contribute to the exacerbation of disease during secondary infection. Here, we tested this hypothesis and investigated the ability of acute sera of 30 DENV2-infected patients with different grades of disease severity, to bind, neutralize and/or enhance immature DENV2. We found that a significant fraction of serum Abs bind to the prM protein and to immature virions, but we observed no significant difference between the disease severity groups. Furthermore, functional analysis of the Abs did not underscore any specific correlation between the neutralizing/enhancing activity towards immature DENV2 and the development of more severe disease. Based on our analysis of acute sera, we conclude that Abs binding to immature virions are not a discriminating factor in dengue pathogenesis.
    PLoS neglected tropical diseases 03/2015; 9(3). DOI:10.1371/journal.pntd.0003564 · 4.72 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
May 28, 2014