Article

A3 adenosine receptor signaling influences pulmonary inflammation and fibrosis.

Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas77030, USA.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 07/2008; 39(6):697-705. DOI: 10.1165/rcmb.2007-0419OC
Source: PubMed

ABSTRACT Adenosine is a signaling molecule produced during conditions that cause cellular stress or damage. This signaling pathway is implicated in the regulation of pulmonary disorders through the selective engagement of adenosine receptors. The goal of this study was to examine the involvement of the A(3) adenosine receptor (A(3)R) in a bleomycin model of pulmonary inflammation and fibrosis. Results demonstrated that A(3)R-deficient mice exhibit enhanced pulmonary inflammation that included an increase in eosinophils. Accordingly, there was a selective up-regulation of eosinophil-related chemokines and cytokines in the lungs of A(3)R-deficient mice exposed to bleomycin. This increase in eosinophil numbers was accompanied by a decrease in the amount of extracellular eosinophil peroxidase activity in lavage fluid from A(3)R-deficient mice exposed to bleomycin, an observation suggesting that the A(3)R is necessary for eosinophil degranulation in this model. Despite an increase in inflammatory metrics associated with A(3)R-deficient mice treated with bleomycin, there was little difference in the degree of pulmonary fibrosis. Examination of fibrotic mediators demonstrated enhanced transforming growth factor (TGF)-beta1 expression, but not a concomitant increase in TGF-beta1 activity. This was associated with the loss of expression of matrix metalloprotease 9, an activator of TGF-beta1, in alveolar macrophages and airway mast cells in the lungs of A(3)R-deficient mice. Together, these results suggest that the A(3)R serves antiinflammatory functions in the bleomycin model, and is also involved in regulating the production of mediators that can impact fibrosis.

Download full-text

Full-text

Available from: Eva Morschl, Jul 06, 2015
0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example. It has only recently been appreciated that adenosine has a key role in tissue regenerative and fibrotic processes. An understanding of these processes may shed new light on potential therapeutic options in diseases such as scleroderma where tissue fibrosis features prominently. KeywordsAdenosine receptor-Fibrosis-Collagen-Cirrhosis
    Modern Rheumatology 04/2010; 20(2):114-122. DOI:10.1007/s10165-009-0251-4 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P2X receptors are cation-selective ion channels activated by extracellular ATP. They form homo- and heterotrimeric complexes that differ in their functional properties and subcellular localization. These membrane ion channels are also expressed in pulmonary epithelial cells. Recent work indicates that alveolar epithelial type I cells selectively express P2X(4) and P2X(7) receptor subtypes in addition to a large number of other ion channels present in the alveolar epithelium. Up- or downregulation of their expression is associated with several disease states. This minireview analyses the role of P2X receptors and of extracellular ATP and adenosine in lung disease, the relationship of P2X receptors to other ion channels in the alveolar epithelium and their distribution in lipid rafts/caveolae.
    FEBS Journal 01/2009; 276(2):341-53. DOI:10.1111/j.1742-4658.2008.06795.x · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
    Handbook of experimental pharmacology 02/2009; DOI:10.1007/978-3-540-89615-9_8