Article

Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.

TNO-Quality of Life, Julianalaan 67, 2628 BC Delft, The Netherlands.
Applied and Environmental Microbiology (Impact Factor: 3.95). 07/2008; 74(16):5031-7. DOI: 10.1128/AEM.00924-08
Source: PubMed

ABSTRACT The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to utilize xylose as a substrate by expressing xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli. The initial yield on xylose was low (9% [g CDW g substrate(-1)], where CDW is cell dry weight), and the growth rate was poor (0.01 h(-1)). The main cause of the low yield was the oxidation of xylose into the dead-end product xylonate by endogenous glucose dehydrogenase (Gcd). Subjecting the XylAB-expressing P. putida S12 to laboratory evolution yielded a strain that efficiently utilized xylose (yield, 52% [g CDW g xylose(-1)]) at a considerably improved growth rate (0.35 h(-1)). The high yield could be attributed in part to Gcd inactivity, whereas the improved growth rate may be connected to alterations in the primary metabolism. Surprisingly, without any further engineering, the evolved D-xylose-utilizing strain metabolized l-arabinose as efficiently as D-xylose. Furthermore, despite the loss of Gcd activity, the ability to utilize glucose was not affected. Thus, a P. putida S12-derived strain was obtained that efficiently utilizes the three main sugars present in lignocellulosic hydrolysate: glucose, xylose, and arabinose. This strain will form the basis for a platform host for the efficient production of biochemicals from renewable feedstock.

Download full-text

Full-text

Available from: Jean-Paul Meijnen, Jul 01, 2015
0 Followers
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Population heterogeneity occurring in industrial microbial bioprocesses is regarded as a putative effector causing performance loss in large scale. While the existence of subpopulations is a commonly accepted fact, their appearance and impact on process performance still remains rather unclear. During cell cycling, distinct subpopulations differing in cell division state and DNA content appear which contribute individually to the efficiency of the bioprocess. To identify stressed or impaired subpopulations, we analyzed the interplay of growth rate, cell cycle and phenotypic profile of subpopulations by using flow cytometry and cell sorting in conjunction with mass spectrometry based global proteomics. Adjusting distinct growth rates in chemostats with the model strain Pseudomonas putida KT2440, cells were differentiated by DNA content reflecting different cell cycle stages. The proteome of separated subpopulations at given growth rates was found to be highly similar, while different growth rates caused major changes of the protein inventory with respect to e.g. carbon storage, motility, lipid metabolism and the translational machinery. In conclusion, cells in various cell cycle stages at the same growth rate were found to have similar to identical proteome profiles showing no significant population heterogeneity on the proteome level. In contrast, the growth rate clearly determines the protein composition and therefore the metabolic strategy of the cells.
    09/2014; 4(71):http://www.amb-express.com/content/4/1/71. DOI:10.1186/s13568-014-0071-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show that biomass and PHA productivity can be increased, and sometimes dramatically, in a fermentor. The relevant application-specific properties of the polymers from the wastes studied and the effect of altered-waste composition on polymer properties are generally not well reported and would greatly benefit the progress of the research as high productivity is of limited value without the context of requisite case-specific polymer properties. The proposed use of a waste residual is advantageous from a life cycle viewpoint as it removes the direct or indirect effect of PHA production on land usage and food production. However, the question, of how economic drivers will promote or hinder advancements to demonstration scale, when wastes generally become understood as resources for a biobased society, hangs today in the balance due to a lack of shared vision and the legacy of mistakes made with first generation bioproducts.
    Advances in applied microbiology 01/2013; 84:139-200. DOI:10.1016/B978-0-12-407673-0.00004-7 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since their discovery many decades ago, Pseudomonas putida and related subspecies have been intensively studied with regard to their potential application in industrial biotechnology. Today, these Gram-negative soil bacteria, traditionally known as well-performing xenobiotic degraders, are becoming efficient cell factories for various products of industrial relevance including a full range of unnatural chemicals. This development is strongly driven by systems biotechnology, integrating systems metabolic engineering approaches with novel concepts from bioprocess engineering, including novel reactor designs and renewable feedstocks.
    Applied Microbiology and Biotechnology 03/2012; 93(6):2279-90. DOI:10.1007/s00253-012-3928-0 · 3.81 Impact Factor