A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo.

Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
Nature Chemical Biology (Impact Factor: 13.22). 09/2008; 4(8):483-90. DOI: 10.1038/nchembio.96
Source: PubMed

ABSTRACT Pathological hyperphosphorylation of the microtubule-associated protein tau is characteristic of Alzheimer's disease (AD) and the associated tauopathies. The reciprocal relationship between phosphorylation and O-GlcNAc modification of tau and reductions in O-GlcNAc levels on tau in AD brain offers motivation for the generation of potent and selective inhibitors that can effectively enhance O-GlcNAc in vertebrate brain. We describe the rational design and synthesis of such an inhibitor (thiamet-G, K(i) = 21 nM; 1) of human O-GlcNAcase. Thiamet-G decreased phosphorylation of tau in PC-12 cells at pathologically relevant sites including Thr231 and Ser396. Thiamet-G also efficiently reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus, which reveals the rapid and dynamic relationship between O-GlcNAc and phosphorylation of tau in vivo. We anticipate that thiamet-G will find wide use in probing the functional role of O-GlcNAc in vertebrate brain, and it may also offer a route to blocking pathological hyperphosphorylation of tau in AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-N-Acetylglucosaminidases from the family 84 of glycoside hydrolases form a small group of glycosidases in eukaryotes responsible for the modification of nuclear and cytosolic proteins with O-GlcNAc, thus they are involved in a number of important cell processes. Here, the first fungal β-N-acetylglucosaminidase from Penicillium chrysogenum was expressed in Pichia pastoris and secreted into the media, purified and characterized. Moreover, homology modeling and substrate and inhibitor docking were performed to obtain structural information on this new member of the GH84 family. Surprisingly, we found that this fungal β-N-acetylglucosaminidase with its sequence and structure perfectly fitting to the GH84 family displays biochemical properties rather resembling the β-N-acetylhexosaminidases from the family 20 of glycoside hydrolases. This work helped to increase the knowledge on the scarcely studied glycosidase family and revealed a new type of eukaryotic β-N-acetylglucosaminidase.
    Protein Expression and Purification 01/2014; 95. DOI:10.1016/j.pep.2014.01.002 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
    Current protocols in protein science / editorial board, John E. Coligan ... [et al.] 11/2011; Chapter 12:Unit12.8. DOI:10.1002/0471140864.ps1208s66
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: O-Linked β-N-acetylglucosaminylation (O-GlcNAcylation) on the Ser/Thr residue of nucleocytoplasmic proteins is a dynamic post-translational modification found in multicellular organisms. More than 500 proteins involved in a wide range of cellular functions, including cell cycle, transcription, epigenesis, and glucose sensing, are modified with O-GlcNAc. Although it has been suggested that O-GlcNAcylation is involved in the differentiation of cells in a lineage-specific manner, its role in skeletal myogenesis is unknown. A myogenesis-dependent drastic decrease in the levels of O-GlcNAcylation was found in mouse C2C12 myoblasts. The global decrease in O-GlcNAcylation was observed at the earlier stage of myogenesis, prior to myoblast fusion. Genetic or pharmacological inactivation of O-GlcNAcase blocked both the myogenesis-dependent global decrease in O-GlcNAcylation and myoblast fusion. Although inactivation of O-GlcNAcase affected neither cell-cycle exit nor cell survival in response to myogenic stimulus, it perturbed the expression of myogenic regulatory factors. While the expression of myod and myf5 in response to myogenic induction was not affected, that of myogenin and mrf4 was severely inhibited by the inactivation of O-GlcNAcase. These results indicate that the terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAcylation. O-GlcNAcylation is involved in differentiation in a cell lineage-dependent manner, and a decrease in O-GlcNAcylation may have a common role in the differentiation of cells of muscle lineage.
    Biochimica et Biophysica Acta 10/2011; 1820(1):24-32. DOI:10.1016/j.bbagen.2011.10.011 · 4.66 Impact Factor


Available from