Article

Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation.

Department of Clinical Chemistry, Rijnstate Hospital, Arnhem, The Netherlands.
Blood (Impact Factor: 9.06). 02/2003; 101(2):747-51. DOI:10.1182/blood-2002-02-0500
Source: PubMed

ABSTRACT Previous studies have shown that approximately 20% of hemoglobin is lost from circulating red blood cells (RBCs), mainly during the second half of the cells' life span. Because hemoglobin-containing vesicles are known to circulate in plasma, these vesicles were isolated. Flow cytometry studies showed that most RBC-derived vesicles contain hemoglobin with all hemoglobin components present. The hemoglobin composition of the vesicles resembled that of old RBCs. RBC cohort studies using isotope-labeled glycine have been described, which showed a continuous presence of this label in hemoglobin degradation products. The label concentration of these products increased during the second half of the RBC life span, accompanied by a decrease within the RBC. It is concluded that the hemoglobin loss from circulating RBCs of all ages can be explained by shedding hemoglobin-containing vesicles. This loss occurs predominantly in older RBCs. Apparently the spleen facilitates this process since asplenia vesicle retention within RBCs of all ages has been described, accompanied by an increase in the percentage of total HbA(1). The present study shows that in old RBCs of asplenic individuals, the decrease of hemoglobin content per cell such as seen in old RBCs of control individuals is absent due to an increase in the absolute amount of HbA(1c) and HbA(1e2). It is concluded that hemoglobin-containing vesicles within old RBCs are "pitted" by the spleen.

0 0
 · 
0 Bookmarks
 · 
59 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
    Frontiers in Physiology 01/2014; 5:9.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The images of human erythrocytes and vesicles were analyzed by a light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking, or any other manipulation. Temperature elevation resulted in significant concentration increase of structurally transformed erythrocytes (echinocytes) and vesicles in the blood. The process of vesicle separation from spiculated erythrocytes was video recorded in real time. At a temperature of 37°C, mean vesicle concentrations and diameters were found to be 1.50 ± 0.35 × 10(6) vesicles per microliter and 0.365 ± 0.065 μm, respectively. The vesicle concentration increased approximately threefold as the temperature increased from 37 to 40°C. It was estimated that 80% of all vesicles found in the blood are smaller than 0.4 μm. Accurate account of vesicle numbers and dimensions suggest that 86% of the lost erythrocyte material is lost not by vesiculation but by another, as yet, unknown mechanism. Microsc. Res. Tech., 2013. © 2013 Wiley Periodicals, Inc.
    Microscopy Research and Technique 08/2013; · 1.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Microparticles (MPs) are small plasma membrane-derived vesicles that can expose molecules originating from their parental cells. As vectors of biological information they are likely to play an active role in both homeostasis and pathogenesis, making them promising biomarkers and nanomedicine tools. Therefore, there is an urgent need for standardization of MP isolation and analysis protocols to propel our understanding of MP biology to the next level. Based on current methodology and recent insights, this review proposes an optimized protocol for the isolation and biochemical characterization of MPs.
    Nanomedicine 10/2013; 8(10):1657-68. · 5.26 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
Sep 23, 2013