Article

Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation.

Department of Clinical Chemistry, Rijnstate Hospital, Arnhem, The Netherlands.
Blood (Impact Factor: 9.78). 02/2003; 101(2):747-51. DOI: 10.1182/blood-2002-02-0500
Source: PubMed

ABSTRACT Previous studies have shown that approximately 20% of hemoglobin is lost from circulating red blood cells (RBCs), mainly during the second half of the cells' life span. Because hemoglobin-containing vesicles are known to circulate in plasma, these vesicles were isolated. Flow cytometry studies showed that most RBC-derived vesicles contain hemoglobin with all hemoglobin components present. The hemoglobin composition of the vesicles resembled that of old RBCs. RBC cohort studies using isotope-labeled glycine have been described, which showed a continuous presence of this label in hemoglobin degradation products. The label concentration of these products increased during the second half of the RBC life span, accompanied by a decrease within the RBC. It is concluded that the hemoglobin loss from circulating RBCs of all ages can be explained by shedding hemoglobin-containing vesicles. This loss occurs predominantly in older RBCs. Apparently the spleen facilitates this process since asplenia vesicle retention within RBCs of all ages has been described, accompanied by an increase in the percentage of total HbA(1). The present study shows that in old RBCs of asplenic individuals, the decrease of hemoglobin content per cell such as seen in old RBCs of control individuals is absent due to an increase in the absolute amount of HbA(1c) and HbA(1e2). It is concluded that hemoglobin-containing vesicles within old RBCs are "pitted" by the spleen.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most human physiologic set points like body temperature are tightly regulated and show little variation between healthy individuals. Red blood cell (RBC) characteristics such as hematocrit (HCT) and mean cell volume (MCV) are stable within individuals but can vary by 20% from one healthy person to the next. The mechanisms for the majority of this inter-individual variation are unknown and do not appear to involve common genetic variation. Here we show that environmental conditions present during development, namely in utero iron availability, can exert long-term influence on a set point related to the RBC life cycle. In a controlled study of rhesus monkeys and a retrospective study of humans, we use a mathematical model of in vivo RBC population dynamics to show that in utero iron deficiency is associated with a lowered threshold for RBC clearance and turnover. This in utero effect is plastic, persisting at least two years after birth and after the cessation of iron deficiency. Our study reports a rare instance of developmental plasticity in the human hematologic systems and also shows how mathematical modeling can be used to identify cellular mechanisms involved in the adaptive control of homeostatic set points.
    American Journal of Hematology 01/2014; · 3.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on the analysis and evaluation of the diverse senescence markers suggested to prime red blood cells (RBC) for clearance in humans. These tags develop in the course of biochemical and structural alterations accompanying RBC aging, as the decrease of activities of multiple enzymes, the gradual accumulation of oxidative damage, the loss of membrane in form of microvesicles, the redistribution of ions and alterations in cell volume, density, and deformability. The actual tags represent the penultimate galactosyl residues, revealed by desialylation of glycophorins, or the aggregates of the anion exchanger (band 3 protein) to which anti-galactose antibodies bind in the first and anti-band 3 naturally occurring antibodies (NAbs) in the second case. While anti-band 3 NAbs bind to the carbohydrate-free portion of band 3 aggregates in healthy humans, induced anti-lactoferrin antibodies bind to the carbohydrate-containing portion of band 3 and along with anti-band 3 NAbs may accelerated clearance of senescent RBC in patients with anti-neutrophil cytoplasmic antibodies (ANCA). Exoplasmically accessible phosphatidylserine (PS) and the alterations in the interplay between CD47 on RBC and its receptor on macrophages, signal regulatory protein alpha (SIRPalpha protein), were also reported to induce erythrocyte clearance. We discuss the relevance of each mechanism and analyze the strength of the data.
    Frontiers in Physiology 01/2013; 4:387.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.
    Frontiers in Physiology 01/2014; 5:9.

Full-text (2 Sources)

Download
40 Downloads
Available from
May 20, 2014