Article

Celiac disease: from gluten to autoimmunity.

Department of Neurosciences, University of Padova, Padova, Italy.
Autoimmunity Reviews (Impact Factor: 7.1). 07/2008; 7(8):644-50. DOI: 10.1016/j.autrev.2008.05.006
Source: PubMed

ABSTRACT Celiac disease, also known as gluten-sensitive enteropathy and nontropical sprue, is a prevalent autoimmune disorder that is triggered by the ingestion of wheat gluten and related proteins of rye and barley in genetically susceptible individuals. The immune response in celiac disease involves the adaptive, as well as the innate, and is characterized by the presence of anti-gluten and anti-transglutaminase 2 antibodies, lymphocytic infiltration in the epithelial membrane and the lamina propria, and expression of multiple cytokines and other signaling proteins. The disease leads to inflammation, villous atrophy, and crypt hyperplasia in the small intestine. In addition to the intestinal symptoms, celiac disease is associated with various extra-intestinal complications, including bone and skin disease, anemia, endocrine disorders, and neurologic deficits. Gluten-free diet is currently the only effective mode of treatment for celiac disease, but better understanding of the mechanism of the disease is likely to add other choices for therapy in the future.

1 Follower
 · 
243 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effects of storage conditions: cool (15 ± 1°C, 90% relative humidity (RH)), ambient (23 ± 2°C, 60% RH) and higher (38 ± 2°C, 60% RH) on changes in physicochemical quality attributes of two cassava flour cultivars (TME 419 and UMUCASS 36) packaged in paper bags and stored for 12 weeks. Physicochemical and microbial qualities were studied at weeks 0, 4, 8 and 12. Moisture content decreased from 12.0% to 7.1% and 9.8% to 6.8% in cultivars ‘TME 419’ and ‘UMUCASS 36’, respectively. Carotenoid content was higher in cultivar (cv.) ‘UMUCASS 36’ (2.5 ± 0.10 mg/g) compare to cv. ‘TME 419’ (1.8 ± 0.11 mg/g). Colour indices of the cassava flour were significantly influenced by storage duration. A slight decrease in microbial load from 5.4 to 4.8 log CFU/g was observed, with increase in temperature from 15°C to 38°C at the end of storage. The ambient storage condition best maintained nutritional and physicochemical quality.
    CyTA - Journal of Food 05/2015; DOI:10.1080/19476337.2015.1029524 · 0.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increase in global demand for healthy food products and initiatives to ensure food security in developing countries has focused on the cultivation of drought-resistant and biofortified cassava varieties. Cassava is a staple root crop grown in subtropical and tropical climates. Cassava flour is gluten free, which can be used as composite flour in essential foods such as bread. Thus, the role of postharvest handling of freshly harvested cassava root is essential, owing to the rapid physiological deterioration of the root soon after harvest. This situation confers a limited shelf life and, thus, creates poor utilization of the cassava root. However, processing cassava root into other food forms such as fufu, garri, starch and high-quality flour enhances stability and long-term storage. This article critically reviewed the postharvest handling, processing and storage of fresh cassava root. Highlighting on the role of storage and minimal processing on sustainable cassava production, various spoilage mechanisms of cassava root were identified. In developing countries, cassava root is a valuable food and energy source, and understanding the role of optimum postharvest handling, processing and storage techniques would alleviate some concerns of food insecurity.
    Food and Bioprocess Technology 04/2015; 8(4). DOI:10.1007/s11947-015-1478-z · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased immunoglobulin G (IgG) response to dietary antigens can be associated with gastrointestinal dysfunction and autoimmunity. The underlying processes contributing to these adverse reactions remain largely unknown, and it is likely that genetic factors play a role. Here, we estimate heritability and attempt to localize genetic factors influencing IgG antibody levels against food-derived antigens using an integrative genomics approach. IgG antibody levels were determined by ELISA in >1,300 Mexican Americans for the following food antigens: wheat gliadin; bovine casein; and two forms of bovine serum albumin (BSA-a and BSA-b). Pedigree-based variance components methods were used to estimate additive genetic heritability (h(2) ), perform genome-wide association analyses, and identify transcriptional signatures (based on 19,858 transcripts from peripheral blood lymphocytes). Heritability estimates were significant for all traits (0.15-0.53), and shared environment (based on shared residency among study participants) was significant for casein (0.09) and BSA-a (0.33). Genome-wide significant evidence of association was obtained only for antibody to gliadin (P = 8.57 × 10(-8) ), mapping to the human leukocyte antigen II region, with HLA-DRA and BTNL2 as the best candidate genes. Lack of association of known celiac disease risk alleles HLA-DQ2.5 and -DQ8 with antigliadin antibodies in the studied population suggests a separate genetic etiology. Significant transcriptional signatures were found for all IgG levels except BSA-b. These results demonstrate that individual genetic differences contribute to food antigen antibody measures in this population. Further investigations may elucidate the underlying immunological processes involved.
    Genetic Epidemiology 07/2014; 38(5):439-46. DOI:10.1002/gepi.21817 · 2.95 Impact Factor