Article

Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study.

Northern Ireland Centre for Food & Health (NICHE), Centre for Molecular Biosciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom.
NeuroToxicology (Impact Factor: 3.05). 07/2008; 29(5):776-82. DOI: 10.1016/j.neuro.2008.06.002
Source: PubMed

ABSTRACT Fish consumption during gestation can provide the fetus with long-chain polyunsaturated fatty acids (LCPUFA) and other nutrients essential for growth and development of the brain. However, fish consumption also exposes the fetus to the neurotoxicant, methyl mercury (MeHg). We studied the association between these fetal exposures and early child development in the Seychelles Child Development Nutrition Study (SCDNS). Specifically, we examined a priori models of Omega-3 and Omega-6 LCPUFA measures in maternal serum to test the hypothesis that these LCPUFA families before or after adjusting for prenatal MeHg exposure would reveal associations with child development assessed by the BSID-II at ages 9 and 30 months. There were 229 children with complete outcome and covariate data available for analysis. At 9 months, the PDI was positively associated with total Omega-3 LCPUFA and negatively associated with the ratio of Omega-6/Omega-3 LCPUFA. These associations were stronger in models adjusted for prenatal MeHg exposure. Secondary models suggested that the MeHg effect at 9 months varied by the ratio of Omega-6/Omega-3 LCPUFA. There were no significant associations between LCPUFA measures and the PDI at 30 months. There were significant adverse associations, however, between prenatal MeHg and the 30-month PDI when the LCPUFA measures were included in the regression analysis. The BSID-II mental developmental index (MDI) was not associated with any exposure variable. These data support the potential importance to child development of prenatal availability of Omega-3 LCPUFA present in fish and of LCPUFA in the overall diet. Furthermore, they indicate that the beneficial effects of LCPUFA can obscure the determination of adverse effects of prenatal MeHg exposure in longitudinal observational studies.

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. Copyright © 2014. Published by Elsevier Inc.
    Toxicology and Applied Pharmacology 11/2014; 282(1). DOI:10.1016/j.taap.2014.11.005 · 3.63 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seafood is an important source of nutrients for fetal neurodevelopment. Most individuals are exposed to the toxic element mercury through seafood. Due to the neurotoxic effects of mercury, United States government agencies recommend no more than 340g (12oz) per week of seafood consumption during pregnancy. However, recent studies have shown that selenium, also abundant in seafood, can have protective effects against mercury toxicity. In this study, we analyzed mercury and selenium levels and selenoprotein mRNA, protein, and activity in placenta of a cohort of women in Hawaii in relation to maternal seafood consumption assessed with dietary surveys. Fish consumption resulted in differences in mercury levels in placenta and cord blood. When taken as a group, those who consumed no fish exhibited the lowest mercury levels in placenta and cord blood. However, there were numerous individuals who either had higher mercury with no fish consumption or lower mercury with high fish consumption, indicating a lack of correlation. Placental expression of selenoprotein mRNAs, proteins and enzyme activity was not statistically different in any region among the different dietary groups. While the absence of seafood consumption correlates with lower average placental and cord blood mercury levels, no strong correlations were seen between seafood consumption or its absence and the levels of either selenoproteins or selenoenzyme activity. Copyright © 2015 Elsevier GmbH. All rights reserved.
    Journal of Trace Elements in Medicine and Biology 04/2015; 30. DOI:10.1016/j.jtemb.2015.01.006 · 2.49 Impact Factor

Full-text (2 Sources)

Download
16 Downloads
Available from
Jun 2, 2014