Article

Ligand-binding pocket shape differences between sphingosine 1-phosphate (S1P) receptors S1P1 and S1P3 determine efficiency of chemical probe identification by ultrahigh-throughput screening.

Department of Scientific Computing, The Scripps Research Institute, La Jolla, California and Jupiter, Florida, USA.
ACS Chemical Biology (Impact Factor: 5.36). 08/2008; 3(8):486-98. DOI: 10.1021/cb800051m
Source: PubMed

ABSTRACT We have studied the sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G-protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonist chemotypes for each of the S1P1 and S1P3 receptors. Ultrahigh-throughput screening (uHTS) for S1P1 was more effective than that for S1P3, with many selective, low nanomolar hits of proven mechanism emerging. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for subtype selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of headgroup interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 versus S1P3 in this closely related receptor family.

Full-text

Available from: Stephan Schurer, Feb 04, 2014
0 Followers
 · 
211 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies on lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) using various approaches have shown that both the molecules can act as intercellular signaling molecules. The discovery of the Edg subfamily of G-protein-coupled receptors (GPCRs) (later renamed LPA(1-3) and S1P(1-5)) for these molecules has opened up a new avenue for pathophysiological research on lysophospholipids. Genetic and molecular studies on lysophospholipid GPCRs have elucidated pathophysiological impacts and roles in cellular signaling pathways. Recently, lysophospholipid GPCR genes have been used to develop receptor subtype-selective agonists and antagonists. The discovery of FTY720, a novel immune modulator, along with other chemical tools, has provided a means of elucidating the functions of each lysophospholipid GPCR on an organ and the whole body level. This communication attempts to retrospectively review the development of agonists and antagonists for lysophospholipid GPCRs, provide integrated information on pharmacological tools for lysophospholipid GPCR signaling, and speculate on future drug development.
    Acta Pharmacologica Sinica 09/2010; 31(9):1213-22. DOI:10.1038/aps.2010.135 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P(3)) signaling and SphK1 in activated rat astrocytes has not been defined. Using immunohistochemistry we observed the upregulation of S1P(3) and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P(3) and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P(3) agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P(3) upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P(3) signaling compared to S1P(1) signaling was demonstrated by the use of selective S1P(3) or S1P(1) agonists. In summary, our data demonstrate that the SphK1/S1P(3) signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.
    PLoS ONE 08/2011; 6(8):e23905. DOI:10.1371/journal.pone.0023905 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The efficacy of the recently approved drug fingolimod (FTY720) in multiple sclerosis patients results from the action of its phosphate metabolite on sphingosine-1-phosphate S1P1 receptors, while a variety of side effects have been ascribed to its S1P3 receptor activity. Although S1P and phospho-fingolimod share the same structural elements of a zwitterionic head group and lipophilic tail, a variety of chemotypes have been found to show S1P1 receptor agonism. Here we describe a study of the tolerance of the S1P1 and S1P3 receptors towards bicyclic heterocycles of systematically varied shape and connectivity incorporating acidic, basic or zwitterionic headgroups. We compare their physicochemical properties, their performance in in vitro and in vivo pharmacokinetic models, and their efficacy in peripheral lymphocyte lowering. The campaign resulted in the identification of several potent S1P1 receptor agonists with good selectivity vs S1P3-receptors, efficacy at <1mg/kg oral doses and developability properties suitable for progression into preclinical development.
    Journal of Medicinal Chemistry 11/2014; 57(24). DOI:10.1021/jm5010336 · 5.48 Impact Factor