The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation.

Stem Cell and Cancer Institute, MDCL Rm. 5030, Faculty of Health Sciences, McMaster University, 1200 Main St. W, Hamilton, ON, Canada.
Molecular and Cellular Biology (Impact Factor: 5.04). 07/2008; 28(17):5312-27. DOI: 10.1128/MCB.00128-08
Source: PubMed

ABSTRACT The histone demethylase lysine demethylase 5b (KDM5b) specifically demethylates lysine 4 of histone H3 (meH3K4), thereby repressing gene transcription. KDM5b regulates cell cycle control genes in cancer and is expressed in the early epiblast. This suggests that KDM5b plays a developmental role by maintaining uncommitted progenitors. Here we show that transient overexpression of KDM5b in embryonic stem cells decreases the expression of at least three different modulators of cell fate decisions, Egr1, p27(KIP1), and BMI1, by demethylation of their promoters. Constitutively increased KDM5b expression results in an increased mitotic rate and a decreased global 3meH3K4 but no change in cell identity. Results of two separate differentiation assays, neural differentiation and embryoid body EB (EB) formation, showed that KDM5b reduced the terminally differentiated cells and increased proliferating progenitors. These were achieved by two mechanisms, blocking of the upregulation of cell lineage markers and maintenance of cyclins, that allowed cells to escape differentiation and remain uncommitted. Additionally, EBs maintain high levels of Oct4 and Nanog and can be dissociated to reestablish highly proliferative cultures. The persistence of uncommitted progenitors may be due to the direct regulation of the Tcf/Lef family member mTcf3/hTcf7L1, an upstream regulator of Nanog expression. These findings demonstrate a role for KDM5b in the choice between proliferation and differentiation during development.


Available from: Bijan K Dey, Apr 18, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective The immune inflammatory disorders rheumatoid arthritis (RA), psoriatic arthritis (PsA) and psoriasis (Ps) share common pathologic features and show responsiveness to anti-tumor necrosis factor (TNF) agents yet they are phenotypically distinct. The aim of this study was to examine if anti-TNF therapy is associated with divergent gene expression profiles in circulating cells and target tissues of patients with these diseases. Methods Peripheral blood CD14+ and CD14− cells were isolated from 9 RA, 12 PsA and 10 Ps patients before and after infliximab (IFX) treatment. Paired synovial (n = 3, RA, PsA) and skin biopsies (n = 5, Ps) were also collected. Gene expression was analyzed by microarrays. Results 26 out of 31 subjects responded to IFX. The transcriptional response of CD14+ cells to IFX was unique for the three diseases, with little overlap (<25%) in significantly changed gene lists (with PsA having the largest number of changed genes). In Ps, altered gene expression was more pronounced in lesional skin (relative to paired, healthy skin) compared to blood (relative to healthy controls). Marked suppression of up-regulated genes in affected skin was noted 2 weeks after therapy but the expression patterns differed from uninvolved skin. Divergent patterns of expression were noted between the blood cells and skin or synovial tissues in individual patients. Functions that promote cell differentiation, proliferation and apoptosis in all three diseases were enriched. RA was enriched in functions in CD14− cells, PsA in CD14+ cells and Ps in both CD14+ and CD14− cells, however, the specific functions showed little overlap in the 3 disorders. Conclusion Divergent patterns of altered gene expression are observed in RA, PsA and Ps patients in blood cells and target organs in IFX responders. Differential gene expression profiles in the blood do not correlate with those in target organs.
    PLoS ONE 10/2014; 9(10):e110657. DOI:10.1371/journal.pone.0110657 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural fate commitment is an early embryonic event that a group of cells in ectoderm, which do not ingress through primitive streak, acquire a neural fate but not epidermal or mesodermal lineages. Several extracellular signaling pathways initiated by the secreted proteins bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), wingless/int class proteins (WNTs) and Nodal play essential roles in the specification of the neural plate. Accumulating evidence from the studies on mouse and pluripotent embryonic stem cells reveals that except for the extracellular signals, the intracellular molecules, including both transcriptional and epigenetic factors, participate in the modulation of neural fate commitment as well. In the review, we mainly focus on recent findings that the initiation of the nervous system is elaborately regulated by the intrinsic programs, which are mediated by transcriptional factors such as Sox2, Zfp521, Sip1 and Pou3f1, as well as epigenetic modifications, including histone methylation/demethylation, histone acetylation/deacetylation, and DNA methylation/demethylation. The discovery of the intrinsic regulatory machineries provides better understanding of the mechanisms by which the neural fate commitment is ensured by the cooperation between extracellular factors and intracellular molecules. © 2015 Japanese Society of Developmental Biologists.
    Embryologia 02/2015; 57(2):109-20. DOI:10.1111/dgd.12204 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires profound alterations in the epigenetic landscape. During reprogramming, a change in chromatin structure resets the gene expression and stabilises self-renewal. Reprogramming is a highly inefficient process, in part due to multiple epigenetic barriers. Although many epigenetic factors have already been shown to affect self-renewal and pluripotency in embryonic stem cells (ESCs), only a few of them have been examined in the context of dedifferentiation. In order to improve current protocols of iPSCs generation, it is essential to identify epigenetic drivers and blockages of somatic cell reprogramming.