Article

Metabolic syndrome affects fatty acid composition of plasma lipids in obese prepubertal children.

Unit of Paediatric Endocrinology, Reina Sofia University Hospital, Cordoba, Spain.
Lipids (Impact Factor: 2.35). 07/2008; 43(8):723-32. DOI: 10.1007/s11745-008-3203-4
Source: PubMed

ABSTRACT The aim of the present study was to assess the plasma fatty acid composition of the total plasma lipids and lipid fractions in obese prepubertal children with and without metabolic syndrome (MS). Thirty-four obese prepubertal children were recruited: 17 who met MS criteria and 17 who did not; and twenty prepubertal children of normal weight. MS characteristics, insulin resistance (by homeostasis model assessment [HOMA-IR]), and plasma adiponectin (by radioimmunoassay) were recorded. Separation of lipid fractions was performed by liquid chromatography and the concentration of fatty acids in total plasma lipids and fractions was determined by gas-liquid chromatography. Concentrations of 16:1n-7, 16:1n-9, 18:3n-3, 22:6n-3, and n-3 PUFA in total plasma lipids (P < 0.05) and of 16:0, 16:1n-7, 18:1n-9, 18:2n-6, and n-6 PUFA in triacylglycerols (TG) (P < 0.05) were significantly higher in obese MS versus normal-weight children. Increased risk of MS was positively associated with plasma concentration of 16:1n-7 and negatively associated with proportion of 20:4n-6 (OR 2.76; P = 0.004; OR 0.56, P = 0.030, respectively). Saturated FA in TG were associated with HOMA-IR (R = 0.349, P = 0.017) and 22:5n-6 with adiponectin (R = 0.336, P = 0.05). In conclusion, increased concentrations of 16:1n-7 and decreased proportions of 20:4n-6 and 22:5n-6 in plasma lipids appear to be early markers of MS in children at prepubertal age.

0 Followers
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma fatty acid (FA) composition is known to be an indicator of dietary fat quality, but the associations of other dietary factors with plasma FA composition remain unknown in children. We investigated the cross-sectional associations of food consumption with the proportions of FA and estimated desaturase activities in plasma cholesteryl esters (CE) and phospholipids (PL) among children. The subjects were a population sample of 423 children aged 6-8 years examined at baseline of The Physical Activity and Nutrition in Children (PANIC) Study. We assessed food consumption by food records and plasma FA composition by gas chromatography. We used linear regression models adjusted for age, sex, physical activity and total energy intake to analyze the associations. A higher consumption of vegetable oil-based margarine (fat 60-80 %) was associated with a higher proportion of linoleic and α-linolenic acids in plasma CE and PL. A higher consumption of high-fiber grain products was related to a lower proportion of oleic acid in CE and PL. The consumption of candy was directly associated with the proportion of palmitoleic and oleic acid in plasma CE. The consumption of vegetable oil-based margarine was inversely associated with estimated stearoyl-CoA-desaturase activity in plasma CE and PL and the consumption of candy was directly related to it in plasma CE. The results of our study suggest that plasma FA composition is not only a biomarker for dietary fat quality but also reflects the consumption of high-fiber grain products and foods high in sugar among children.
    Lipids 03/2014; DOI:10.1007/s11745-014-3894-7 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome (MetS) is a cluster of metabolic abnormalities associated with an increased risk of developing cardiovascular diseases or type II diabetes. Till now, the etiology of MetS is complex and still unknown. Metabolic profiling is a powerful tool for exploring metabolic perturbations and potential biomarkers, thus may shed light on the pathophysiological mechanism of diseases. In this study, fatty acid profiling was employed to exploit the metabolic disturbances and discover potential biomarkers of MetS. Fatty acid profiles of serum samples from metabolic syndrome patients and healthy controls were first analyzed by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS), a robust method for quantitation of fatty acids. Then, the supervised multivariate statistical method of random forests (RF) was used to establish a classification and prediction model for MetS, which could assist the diagnosis of MetS. Furthermore, canonical correlation analysis (CCA) was employed to investigate the relationships between free fatty acids (FFAs) and clinical parameters. As a result, several FFAs, including C16:1n-9c, C20:1n-9c and C22:4n-6c, were identified as potential biomarkers of MetS. The results also indicated that high density lipoprotein-cholesterol (HDL-C), triglycerides (TG) and fasting blood glucose (FBG) were the most important parameters which were closely correlated with FFAs disturbances of MetS, thus they should be paid more attention in clinical practice for monitoring FFAs disturbances of MetS than waist circumference (WC) and systolic blood pressure/diastolic blood pressure (SBP/DBP). The results have demonstrated that metabolic profiling by GC–SIM–MS combined with RF and CCA may be a useful tool for discovering the perturbations of serum FFAs and possible biomarkers for MetS.
    Talanta 04/2015; 135. DOI:10.1016/j.talanta.2014.12.039 · 3.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND/OBJECTIVES:Studies in adults indicate that dietary polyunsaturated fatty acid (PUFA) composition may play a role in development of adiposity. Because adipocyte quantity is established between late childhood and early adolescence, understanding the impact of PUFAs on weight gain during the school-age years is crucial to developing effective interventions.SUBJECTS/METHODS:We quantified N-3 and N-6 PUFAs in serum samples of 668 Colombian schoolchildren aged 5-12 years at the time of recruitment into a cohort study, using gas-liquid chromatography. Serum concentrations of N-3 (alpha-linolenic acid (ALA), eicosapentaenoic acid, docosahexaenoic acid) and N-6 PUFAs (linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, arachidonic acid) were determined as percentage total fatty acids. Children's anthropometry was measured annually for a median of 30 months. We used mixed-effects models with restricted cubic splines to construct population body mass index-for-age z-score (BAZ) growth curves for age- and sex-specific quartiles of each PUFA.RESULTS:N-3 ALA was inversely related to BAZ gain after adjustment for sex, baseline age and weight status, as well as household socioeconomic level. Estimated BAZ change between 6 and 14 years among children in the highest quartile of ALA compared with those in the lowest quartile was 0.45 (95% confidence interval: 0.07, 0.83) lower (P-trend=0.006).CONCLUSIONS:N-3 ALA may be protective against weight gain in school-age children. Whether improvement in PUFA status reduces adiposity in pediatric populations deserves evaluation in randomized trials.European Journal of Clinical Nutrition advance online publication, 1 October 2014; doi:10.1038/ejcn.2014.210.
    European Journal of Clinical Nutrition 10/2014; 69(2). DOI:10.1038/ejcn.2014.210 · 2.95 Impact Factor