Article

A mechanism for the inhibition of neural progenitor cell proliferation by cocaine

Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America.
PLoS Medicine (Impact Factor: 14). 07/2008; 5(6):e117. DOI: 10.1371/journal.pmed.0050117
Source: PubMed

ABSTRACT Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation.
Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER) stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A.
Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of cocaine N-oxidative metabolism by P450 inhibitors may provide a preventive strategy for counteracting the adverse effects of cocaine on fetal brain development.

Full-text

Available from: Marilyn A Huestis, Jun 14, 2015
0 Followers
 · 
161 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine abuse represents an immense societal health and economic burden for which no effective treatment currently exists. Among the numerous intracellular signaling cascades impacted by exposure to cocaine, increased and aberrant production of pro-inflammatory cytokines in the CNS has been observed. Additionally, we have previously reported a decrease in retinoid-X-receptor-gamma (RXR-γ) in brains of mice chronically exposed to cocaine. Through obligate heterodimerization with a number of nuclear receptors, RXRs serve as master regulatory transcription factors, which can potentiate or suppress expression of a wide spectrum of genes. Little is known about the regulation of RXR levels, but previous studies indicate cellular stressors such as cytokines negatively regulate levels of RXRs in vitro. To evaluate the mechanism underlying the cocaine-induced decreases in RXR-γ levels observed in vivo, we exposed neurons to cocaine in vitro and examined pathways which may contribute to disruption in RXR signaling, including activation of stress pathways by cytokine induction. In these studies, we provide the first evidence that cocaine exposure disrupts neuronal RXR-γ signaling in vitro by promoting its nuclear export and degradation. Furthermore, we demonstrate this effect may be mediated, at least in part, by cocaine-induced production of TNF-α and its downstream effector c-Jun-NH-terminal kinase (JNK). Findings from this study are therefore applicable to both cocaine abuse and to pathological conditions characterized by neuroinflammatory factors, such as neurodegenerative disease.
    Journal of Neuroimmune Pharmacology 01/2015; 10(1). DOI:10.1007/s11481-014-9573-x · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In experimental models, prenatal cocaine exposure has been found to perturb GABA and dopamine development. Clinically, abnormalities in tone, posture and state regulation are noted in early infancy but the evolution of these findings over time is not well described. The current study assesses the longitudinal effects of prenatal cocaine exposure in dose-dependent fashion on developmental & behavioral and neurological trajectories over the first 2 years of life. Three hundred and eighty infants, 113 cocaine-exposed, were enrolled at birth from an urban hospital from 2000 to 2004. Exposure was determined by maternal interview, segmental hair analyses (RIAH(™)) in all, and meconium and urine in a subset. Developmental, behavioral and neurological assessments were carried out blind to drug exposure at 6, 12 and 24 months of age in the 306 children who returned in follow-up. Mixed-effects linear modeling (developmental growth curve) assessed change in outcome over time. The mental developmental growth curve showed a negative slope (2.2 points) in adjusted analyses among cocaine-exposed children over the first 2 years of life. (p=.04), while the slope of the motor development growth curve did not. Adjusting for microcephaly at 6 months diminished the strength of the association between cocaine exposure and mental developmental growth curve (effect modification). Cocaine exposure was marginally associated with behavioral outcomes in adjusted analyses. Total Behavior scores and Orientation/Engagement scores improved with age. At 1 year of age, prenatal cocaine exposure was significantly associated with lower motor development scores. High rates of hypertonia (global and diparesis) identified at the 6-month visit dropped dramatically in the first 2 years of life: cocaine-exposed children showed a more rapid rate of resolution of hypertonia than unexposed children, with hypertonia improving 2.2 times faster among those with heavy cocaine exposure. We found differences in mental performance over the first 2 years of life associated with prenatal cocaine exposure that was mediated by microcephaly implying that cocaine exerts a sustained teratogenic effect on brain development. Early neurological (hypertonia) and behavioral findings associated with prenatal cocaine exposure improved over time. Hypertonia did not predict long-term development impairments. Conceivably, the transient nature of neurobehavioral manifestations reflects postnatally a tendency towards homeostasis of cocaine-related embryopathic perturbations of GABA and dopaminergic systems.
    Journal of Comparative Neurology and Psychology 11/2014; 2(3). DOI:10.13188/2332-3469.1000015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine (METH) induces neurodegeneration through damage and apoptosis of dopaminergic nerve terminals and striatal cells, presumably via cross-talk between the endoplasmic reticulum and mitochondria-dependent death cascades. However, the effects of METH on neural progenitor cells (NPC), an important reservoir for replacing neurons and glia during development and injury, remain elusive. Using a rat hippocampal NPC (rhNPC) culture, we characterized the METH-induced mitochondrial fragmentation, apoptosis, and its related signaling mechanism through immunocytochemistry, flow cytometry, and Western blotting. We observed that METH induced rhNPC mitochondrial fragmentation, apoptosis, and inhibited cell proliferation. The mitochondrial fission protein dynamin-related protein 1 (Drp1) and reactive oxygen species (ROS), but not calcium (Ca2+) influx, were involved in the regulation of METH-induced mitochondrial fragmentation. Furthermore, our results indicated that dysregulation of ROS contributed to the oligomerization and translocation of Drp1, resulting in mitochondrial fragmentation in rhNPC. Taken together, our data demonstrate that METH-mediated ROS generation results in the dysregulation of Drp1, which leads to mitochondrial fragmentation and subsequent apoptosis in rhNPC. This provides a potential mechanism for METH-related neurodegenerative disorders, and also provides insight into therapeutic strategies for the neurodegenerative effects of METH.
    PLoS ONE 02/2009; 4(5):e5546. DOI:10.1371/journal.pone.0005546 · 3.53 Impact Factor