Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.

Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire Mouvement Adaptation Cognition (UMR 5227) Bordeaux, France.
Journal of Neurophysiology (Impact Factor: 3.04). 08/2008; 100(3):1372-83. DOI: 10.1152/jn.00023.2008
Source: PubMed

ABSTRACT Anuran metamorphosis includes a complete remodeling of the animal's biomechanical apparatus, requiring a corresponding functional reorganization of underlying central neural circuitry. This involves changes that must occur in the coordination between the motor outputs of different spinal segments to harmonize locomotor and postural functions as the limbs grow and the tail regresses. In premetamorphic Xenopus laevis tadpoles, axial motor output drives rostrocaudally propagating segmental myotomal contractions that generate propulsive body undulations. During metamorphosis, the anterior axial musculature of the tadpole progressively evolves into dorsal muscles in the postmetamorphic froglet in which some of these back muscles lose their implicit locomotor function to serve exclusively in postural control in the adult. To understand how locomotor and postural systems interact during locomotion in juvenile Xenopus, we have investigated the coordination between postural back and hindlimb muscle activity during free forward swimming. Axial/dorsal muscles, which contract in bilateral alternation during undulatory swimming in premetamorphic tadpoles, change their left-right coordination to become activated in phase with bilaterally synchronous hindlimb extensions in locomoting juveniles. Based on in vitro electrophysiological experiments as well as specific spinal lesions in vivo, a spinal cord region was delimited in which propriospinal interactions are directly responsible for the coordination between leg and back muscle contractions. Our findings therefore indicate that dynamic postural adjustments during adult Xenopus locomotion are mediated by local intraspinal pathways through which the lumbar generator for hindlimb propulsive kicking provides caudorostral commands to thoracic spinal circuitry controlling the dorsal trunk musculature.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance and the restoration of functionally-effective behavior.
    PLoS ONE 08/2013; 8(8):e71013. DOI:10.1371/journal.pone.0071013 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the increase in respiratory rate observed during fictive locomotion is associated with an increase in the excitability of pre-inspiratory neurons of the parafacial respiratory group (pFRG/Pre-I). In addition, this locomotion-induced respiratory rhythm modulation is prevented both by bilateral lesion of the pFRG region and by blockade of neurokinin 1 receptors in the brainstem. Thus, our results assign pFRG/Pre-I neurons a new role as elements of a previously undescribed pathway involved in the functional interaction between respiratory and locomotor networks, an interaction that also involves a substance P-dependent modulating mechanism requiring the activation of neurokinin 1 receptors. This neurogenic mechanism may take an active part in the increased respiratory rhythmicity produced at the onset and during episodes of locomotion in mammals.
    PLoS ONE 02/2014; 9(2):e89670. DOI:10.1371/journal.pone.0089670 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1) to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2) to investigate how the biogenic amines serotonin (5-HT), dopamine (DA), and noradrenaline (NA) modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs) elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic "signature" regarding its specific effect on intersegmental phase relationships.
    Frontiers in Neural Circuits 08/2014; 8:99. DOI:10.3389/fncir.2014.00099 · 2.95 Impact Factor


Available from
May 22, 2014