Article

Photoperiodic induced changes in reproductive state of border canaries (Serinus canaria) are associated with marked variation in hypothalamic gonadotropin-releasing hormone immunoreactivity and the volume of song control regions.

Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2686, USA.
General and Comparative Endocrinology (Impact Factor: 2.82). 06/2008; 158(1):10-9. DOI: 10.1016/j.ygcen.2008.05.011
Source: PubMed

ABSTRACT In temperate zone songbirds, such as canaries (Serinus canaria), seasonal variation in gonadal activity and behavior are associated with marked brain changes. These include gonadotropin-releasing hormone (GnRH) expression and the volume of brain areas controlling song production. Questions have been raised about the consistency of seasonal brain changes in canaries. Laboratory studies of the American singer strain raised doubts as to whether this strain exhibits a robust photoperiodic response along with changes in brain GnRH content, and studies of free-living canaries have failed to identify seasonal changes in volume of song control nuclei. We assessed differences in brain GnRH and the song control system associated with photoperiod-induced variation in reproductive state in Border canaries. We found that males and females maintained for 10 weeks on long days (14L:10D) regress their gonads, exhibit a decline in testosterone and initiate molt; a response consistent with the onset of absolute photorefractoriness (i.e., failed to respond to previously stimulating daylengths). All birds regained photosensitivity (i.e., exhibited gonadal response to stimulating daylengths) after experiencing short days (8L:16D) for 6 weeks. Furthermore, comparisons of birds in either a photosensitive, photostimulated, or photorefractory state revealed a marked increase in GnRH protein expression in the photosensitive and photostimulated birds over photorefractory birds. A similar variation was observed in the volume of key forebrain song nuclei. Thus, Border canaries demonstrate measurable neuroplasticity in response to photoperiodic manipulations. These data, along with previous work on other strains of canaries, indicate the presence of intra-specific variation in photoperiodically regulated neuroplasticity.

0 Bookmarks
 · 
276 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY In many birds, testes undergo dramatic annual changes in size and, as such, are among the most anatomically and physiologically plastic organs found in adult vertebrates. Adult testicular function is modulated by a myriad of external factors and orchestrated by numerous hormones that together enable birds to adapt to and breed in diverse habitats worldwide. These factors have generated a wide range of avian reproductive strategies, which has further shaped testicular structure and function. This chapter describes the mechanisms that control avian exocrine and endocrine testicular functions. It analyzes how these functions are regulated by ecological and behavioral factors and presents an overview of how environmental information is integrated and transduced into appropriate gonadal responses. It also discusses testicular dysfunction and the potential effects of anthropogenic disturbances on testis function. The chapter emphasizes areas where knowledge is lacking or incomplete, with the hope of fostering additional research on this exciting and fruitful area of avian biology.
    01/2011: pages 27-70; Academic Press., ISBN: 9780123749291
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in environmental factors such as day length and social context greatly affects reproductive behavior and the brain areas that regulate these behaviors. One such behavior is song in songbirds, which males use to attract a mate during the breeding season. In these species the absence of a potential mate leads to an increase in the number of songs produced, while the presence of a mate greatly diminishes singing. Interestingly, although long days promote song behavior, producing song itself can promote the incorporation of new neurons in brain regions controlling song output. Social context can also affect such neuroplasticity in these song control nuclei. The goal of the present study was to investigate in canaries (Serinus canaria), a songbird species, how photoperiod and social context affect song and the incorporation of new neurons, as measured by the microtubule-associated protein doublecortin (DCX) in HVC, a key vocal production brain region of the song control system. We show that long days increased HVC size and singing activity. In addition, male canaries paired with a female for 2 weeks showed enhanced DCX-immunoreactivity in HVC relative to birds housed alone. Strikingly, however, paired males sang fewer songs that exhibited a reduction in acoustic features such as song complexity and energy, compared with birds housed alone, which sang prolifically. These results show that social presence plays a significant role in the regulation of neural and behavioral plasticity in songbirds and can exert these effects in opposition to what might be expected based on activity-induced neurogenesis.
    European Journal of Neuroscience 06/2014; DOI:10.1111/ejn.12658 · 3.67 Impact Factor
  • Bioacoustics 01/2009; 19:109-139. DOI:10.1080/09524622.2009.9753617 · 0.73 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
Jun 4, 2014