Article

Toroidal pores formed by antimicrobial peptides show significant disorder.

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 07/2008; 1778(10):2308-17. DOI: 10.1016/j.bbamem.2008.06.007
Source: PubMed

ABSTRACT A large variety of antimicrobial peptides have been shown to act, at least in vitro, by poration of the lipid membrane. The nanometre size of these pores, however, complicates their structural characterization by experimental techniques. Here we use molecular dynamics simulations, to study the interaction of a specific class of antimicrobial peptides, melittin, with a dipalmitoylphosphatidylcholine bilayer in atomic detail. We show that transmembrane pores spontaneously form above a critical peptide to lipid ratio. The lipid molecules bend inwards to form a toroidally shaped pore but with only one or two peptides lining the pore. This is in strong contrast to the traditional models of toroidal pores in which the peptides are assumed to adopt a transmembrane orientation. We find that peptide aggregation, either prior or after binding to the membrane surface, is a prerequisite to pore formation. The presence of a stable helical secondary structure of the peptide, however is not. Furthermore, results obtained with modified peptides point to the importance of electrostatic interactions in the poration process. Removing the charges of the basic amino-acid residues of melittin prevents pore formation. It was also found that in the absence of counter ions pores not only form more rapidly but lead to membrane rupture. The rupture process occurs via a novel recursive poration pathway, which we coin the Droste mechanism.

0 Bookmarks
 · 
189 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a systematic methodology to develop highly coarse-grained (CG) lipid models for large scale biomembrane simulations, in which we derive CG interactions using a powerful combination of the multiscale coarse-graining (MS-CG) method, and an analytical form of the CG potential to model interactions at short-range. The resulting hybrid coarse-graining (HCG) methodology is used to develop a three-site solvent-free model for 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and a 1:1 mixture of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and DOPC. In addition, we developed a four-site model of DOPC, demonstrating the capability of the HCG methodology in designing model lipid systems of a desired resolution. We carried out microsecond-scale molecular dynamics (MD) simulations of large vesicles, highlighting the ability of the model to study systems at mesoscopic length and time scales. The models of DLPC, DOPC, and DOPC/DOPS have elastic properties consistent with experiment and structural properties such as the radial distribution functions (RDF), bond and angle distributions, and the z-density distributions that compare well with reference all-atom systems.
    Journal of Chemical Theory and Computation 11/2012; 9(1):750–765. · 5.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules: changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events - large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism.
    Biochimica et Biophysica Acta 04/2014; 1838:1985 - 1999. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, new and improved methods have been developed to measure translocation of membrane-active peptides (antimicrobial, cytolytic, and amphipathic cell-penetrating peptides) across lipid bilayer membranes. The hypothesis that translocation of membrane-active peptides across a lipid bilayer is determined by the Gibbs energy of insertion of the peptide into the bilayer is re-examined in the light of new experimental tests. The original hypothesis and its motivation are first revisited, examining some specific predictions it generated and the results of initial tests. Translocation is understood as requiring two previous steps: binding and insertion in the membrane. The problem of peptide binding to membranes, its prediction, measurement, and calculation are addressed. Particular attention is given to understanding the reason for the need for amphipathic structures in the function of membrane-active peptides. Insertion into the membrane is then examined. Hydrophobicity scales are compared, and their influence on calculations is discussed. The relation between translocation and graded or all-or-none peptide-induced flux from or into lipid vesicles is also considered. Finally, the most recent work on translocation is examined, both experimental and from molecular dynamics simulations. This article is part of a Special Issue entitled: Interfacially active peptides and proteins.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor

Full-text (2 Sources)

Download
85 Downloads
Available from
May 23, 2014