IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade.

Laboratory of Biological Science, Graduate School of Frontier Biosciences/Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
Nature Cell Biology (Impact Factor: 20.06). 08/2008; 10(8):971-8. DOI: 10.1038/ncb1757
Source: PubMed

ABSTRACT Proliferation of epithelial cells must be spatiotemporally regulated to maintain the organization of epithelial sheets. Here we show that the IQGAP family, comprising IQGAP1, 2 and 3, underlies lateral cell-cell contacts of epithelial cells. Of the three proteins, IQGAP3 is unique in that its expression is specifically confined to proliferating cells. Knockdown of IQGAP3 in cultured epithelial cells caused inhibition of proliferation and ERK activity. When exogenously expressed in quiescent cells, IQGAP3 was capable of inducing cell-cycle re-entry, which was completely inhibited by the MEK inhibitor U0126. Thus, IQGAP3 is necessary and sufficient for driving cell proliferation and ERK acts downstream of IQGAP3. Furthermore, IQGAP3 specifically interacted with the active, GTP-bound form of Ras, and in IQGAP3 knockdown cells, the activity of Ras, but not of other small GTPases, was inhibited. Thus, IQGAP3 regulates the promotion of cell proliferation through Ras-dependent ERK activation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: IQGAP family proteins, comprising IQGAP1, -2, and -3 in mammals, are involved in diverse ranges of cellular processes such as adhesion and migration. IQGAP proteins in yeast also play important roles in cytokinesis. However, the involvement of IQGAP proteins in cytokinesis in mammals remains unaddressed. In this study, we showed that IQGAP3 specifically localized to the equatorial cortex at anaphase, whereas IQGAP1 localized to the cell cortex uniformly and IQGAP2 was unexpressed in HeLa cells. IQGAP3, but neither IQGAP1 nor -2, was able to interact with anillin, which was required for the localization of IQGAP3 to the contractile ring. The suppressed expression of IQGAP3 inhibited the completion of cleavage furrow ingression and led to the multinucleation of cells. The suppression of IQGAP1 also had similar inhibitory effects on cytokinesis, and the simultaneous suppression of IQGAP1 and -3 induced more severe effects. The localization of anillin and RhoA to the contractile ring was impaired by the suppression of IQGAP1 and -3, whereas their upstream regulators, the centralspindlin complex and Ect2, remained unaffected. These results suggested that mammalian IQGAP proteins may play a role in cytokinesis by regulating the localization of key cytokinesis regulatory proteins to the contractile apparatus during mitosis.
    Genes to Cells 09/2014; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known -independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a -independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has -dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with /CaM or apoCaM.
    Analytical Science and Technology. 10/2012; 25(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes.
    PLoS Pathogens 07/2014; 10(7):e1004240. · 8.06 Impact Factor