Gait disorders and balance disturbances in Parkinson's disease: clinical update and pathophysiology.

Department of Neurology, Donders Center for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Current Opinion in Neurology (Impact Factor: 5.73). 09/2008; 21(4):461-71. DOI: 10.1097/WCO.0b013e328305bdaf
Source: PubMed

ABSTRACT Gait disorders and balance impairments are one of the most incapacitating symptoms of Parkinson's disease. Here, we discuss the latest findings regarding epidemiology, assessment, pathophysiology and treatment of gait and balance impairments in Parkinson's disease.
Recent studies have confirmed the high rate and high risk of falls of patients with Parkinson's disease. Therefore, it is crucial to detect patients who are at risk of falling and how to prevent falls. Several studies have shown that multiple balance tests improve the prediction of falls in Parkinson's disease. Difficulty turning may be caused by axial rigidity, affected interlimb coordination and asymmetries. Turning difficulties are easily assessed by timed performance and the number of steps during a turn. Impaired sensorimotor integration, inability of switching between sensory modalities and lack of compensatory stepping may all contribute to the high incidence of falls in patients with Parkinson's disease. Similarly, various studies highlighted that pharmacotherapy, neurosurgery and physiotherapy may adversely affect balance and gait in Parkinson's disease.
Insights into the pathophysiology of Parkinson's disease continue to grow. At the same time, it is becoming clear that some patients may in fact deteriorate with treatment. Future research should focus on the development and evaluation of multifactorial fall prevention strategies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Falls can be considered a disabling feature in Parkinson's disease. We aimed to identify risk factors for falling, testing simultaneously the ability of disease-specific and balance-related measures. We evaluated 171 patients, collecting demographic and clinical data, including standardized assessments with the Unified Parkinson's Disease Rating Scale (UPDRS), activities of daily living (ADL) and motor sections, modified Hoehn and Yahr Scale, Schwab and England, eight-item Parkinson's Disease Questionnaire, Activities-specific Balance Confidence Scale, Falls Efficacy Scale-International (FES-I), Berg Balance Scale, Dynamic Gait Index, Functional Reach, and Timed Up and Go. ROC curves were constructed to determine the cutoff scores for all measures. Variables with íµí±ƒ < 0.1 entered a logistic regression model. The prevalence of recurrent falls was 30% (95% CI 24%–38%). In multivariate analysis, independent risk factors for recurrent falls were (íµí±ƒ < 0.05) levodopa equivalent dose (OR = 1.283 per 100 mg increase; 95% CI = 1.092–1.507), UPDRS-ADL > 16 points (OR = 10.0; 95% CI = 3.6–28.3), FES-I > 30 points (OR = 6.0; 95% CI = 1.6–22.6), and Berg ≤ 48 points (OR = 3.9; 95% CI = 1.2–12.7).We encourage the utilization of these modifiable risk factors in the screening of fall risk.
    11/2014; 2014:8 pages. DOI:10.1155/2014/432924
  • [Show abstract] [Hide abstract]
    ABSTRACT: Movement incoordination, freezing of gait, fear of falling, low self-efficacy, and multi-tasking can all contribute to falls in Parkinson's disease. How these multi-factorial risks interact in individual patients remain poorly understood. Concurrent arm swing-stepping is a simple motor test in which subjects are first asked to swing their arms before being instructed to initiate the secondary task of leg stepping-in-place. We postulated that in patients with multiple fall risks, sensorimotor impairments in upper- and lower-limb movement control can render concurrent arm swing-stepping a demanding dual task, thereby triggering gait hesitation. A total of 31 subjects with Parkinson's disease were enrolled in the study. It was found that concurrent arm swing-stepping induced hesitation primarily in Parkinson's disease patients with low fall-related self-efficacy and a fear of falling. By contrast, concurrent arm swing-stepping led to limb incoordination in both patients and in healthy elderly controls. The calculated specificity and sensitivity of the concurrent arm swing-stepping test was 100 and 42 % for hesitation and 12 and 77 % for incoordination. These results suggest that the concurrent arm swing-stepping test can be used in conjunction with conventional psychometric assessments to facilitate multi-factorial assessment of potential fall risk.
    Aging - Clinical and Experimental Research 01/2015; DOI:10.1007/s40520-014-0313-0 · 1.01 Impact Factor


Available from
Mar 25, 2015