Synthesis of piperazinylalkyl ester prodrugs of ketorolac and their in vitro evaluation for transdermal delivery.

Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
Drug Development and Industrial Pharmacy (Impact Factor: 2.01). 07/2008; 34(10):1054-63. DOI: 10.1080/03639040801946681
Source: PubMed

ABSTRACT Ketorolac, an NSAID, has low intrinsic permeation capacity through the skin. In this work, seven piperazinylalkyl ester prodrugs of ketorolac were synthesized to enhance its skin permeation. The chemical hydrolysis and the stability in human serum at 37 degrees C were investigated in buffer solutions (pH 5.0 and 7.4) and in 80% human serum (pH 7.4), respectively. The prodrugs were chemically more stable at pH 5.0 than at pH 7.4 with prodrug 8 being the most stable (t(1/2) = 119.75 h and 11.97 h at pH 5 and 7.4, respectively). The prodrugs' t(1/2) in human serum ranged from 0.79 to 3.92 min. The prodrugs' aqueous solubility was measured in buffer solution at pH 5.0 and 7.4 and Log P(app) was measured by partitioning between buffer solution (pH 5.0 and 7.4) and n-octanol. The prodrugs were more lipophilic than ketorolac at pH 7.4. Skin permeation of ketorolac and prodrug 8, the most stable chemically, through rat skin was studied at pH 5.0 and 7.4. Prodrug 8 enhanced permeation by 1.56- and 11.39-fold at pH 5 and 7.4, respectively. This is attributed to higher lipophilicity at pH 7.4 and higher aqueous solubility at pH 5 compared to ketorolac.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel bone-targeting prodrugs containing dendritic naproxen and poly(aspartic acid) oligopeptide were synthesized in a convergent approach and well characterized by NMR, mass spectral (MS) and elemental analysis techniques. The modified naproxen prodrugs showed a high affinity to hydroxyapatite in vitro and provided an effective entry for the synthesis of a dendritic naproxen-poly(aspartic acid) oligopeptide conjugates used for bone targeting.
    Synthetic Communications 12/2012; 42(23). DOI:10.1080/00397911.2011.584259 · 0.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different types of ketorolac ester prodrugs incorporating tert-butyl (KT), benzyl (KB), heptyl (KH), and diketorolac heptyl (DKH) promoieties were synthesized for the comparison of percutaneous penetration. The prodrugs were characterized according to their melting point, capacity factor, lipophilicity, solubility in 30% ethanol/buffer, enzymatic hydrolysis, in vitro skin permeation, hair follicle accumulation, and in vivo skin tolerance. Interactions between the prodrugs and esterases were predicted by molecular docking. Both equimolar suspensions and saturated solutions in 30% ethanol/pH 7.4 buffer were employed as the applied dose. All of the prodrugs exhibited a lower melting point than ketorolac. The lipophilicity increased in the following order: ketorolac < KT < KB < KH < DKH. The prodrugs were rapidly hydrolyzed to the parent drug in esterase medium, skin homogenate, and plasma, with KT and KB exhibiting higher degradation rates. KT exhibited the highest skin permeation, followed by KB. The flux of KT and KB exceeded that of ketorolac by 2.5-fold and twofold, respectively. KH and DKH did not improve ketorolac permeation but exhibited a sustained release behavior. KT and KH revealed selective absorption into follicles and a threefold greater follicular uptake compared with ketorolac. KB, KH, and DKH slightly but significantly increased transepidermal water loss (TEWL) after consecutive administration for 7 days, whereas ketorolac and KT exhibited no influence on TEWL. According to the experimental results, it can be concluded that an optimal balance between lipophilicity and aqueous solubility is important in the design of a successful prodrug. The acceptable skin tolerance for safe application is also an important consideration. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
    Journal of Pharmaceutical Sciences 03/2014; 103(3). DOI:10.1002/jps.23888 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transdermal application of drugs has attracted increasing interest over the last decade or so, due to the advantages it offers, compared to other delivery methods. The development of an efficient means of transdermal delivery can increase drug concentrations, while reducing their systemic distribution, thereby avoiding certain limitations of oral administration. The efficient barrier function of the skin, however, limits the use of most drugs as transdermal agents. This limitation has led to the development of various strategies to enhance drug-skin permeation, including the use of penetration enhancers. This method unfortunately has certain proven disadvantages, such as the increased absorption of unwanted components, besides the drug, which may induce skin damage and irritancy. The prodrug approach to increase the skin's permeability to drugs represents a very promising alternative to penetration enhancers. The concept involves the chemical modification of a drug into a bioreversible entity that changes both its pharmaceutical and pharmacokinetic characteristics to enhance its delivery through the skin. In this review; we report on the in vitro attempts and successes over the last decade by using the prodrug strategy for the percutaneous delivery of pharmacological molecules.
    Molecules 12/2014; 19(12):20780-20807. DOI:10.3390/molecules191220780 · 2.10 Impact Factor