Diffusion tensor tractography in mesencephalic bundles: relation to mental flexibility in detoxified alcohol-dependent subjects.

INSERM, U797 Research Unit Neuroimaging and Psychiatry, IFR49, Orsay, France.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 08/2008; 34(5):1223-32. DOI: 10.1038/npp.2008.101
Source: PubMed

ABSTRACT Components of the corticocerebellar circuit and the midbrain individually play a central role in addictive processes and have been associated with altered volumes and impairment of cognitive flexibility in alcohol-dependent subjects. The microstructure of white matter bundles composing the corticocerebellar network and passing through the midbrain was studied using diffusion tensor imaging in a group of detoxified alcohol-dependent men (n=20) and a group of healthy men (n=24). The relationship between properties of these white matter bundles and cognitive flexibility performance was investigated in alcohol-dependent subjects. Bundles connecting two regions of interest were analyzed using a fiber-tracking quantitative approach, which provided estimates of the fractional anisotropy and the apparent diffusion coefficient, as well as the number of tracked fibers normalized by the volume of regions of interest. Within the bundles running between the midbrain and pons, a mean of 18% fewer fibers per unit volume were tracked in alcohol-dependent men than in healthy controls. In addition, the normalized number of these fibers correlated with the performance in the Trail-Making Test part-B. Even though the alcohol-dependent subjects were detoxified and apparently neurologically intact, their earlier excessive use of alcohol seems to be associated with altered neural microstructure of mesencephalic white matter bundles, which may contribute to their cognitive flexibility impairment.


Available from: Nikoleta Kostogianni, Mar 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol use disorders present a significant public health problem in France and the United States (U.S.), but whether the untoward effect of alcohol on the brain results in similar damage in both countries remains unknown. Accordingly, we conducted a retrospective collaborative investigation between two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) with T1-weighted, structural MRI data collected on a common imaging platform (1.5T, General Electric) on 288 normal controls (NC), 165 uncomplicated alcoholics (ALC), and 26 patients with alcoholic Korsakoff's syndrome (KS) diagnosed at all sites with a common interview instrument. Data from the two countries were pooled, then preprocessed and analyzed together at the U.S. site using atlas-based parcellation. National differences indicated that thalamic volumes were smaller in ALC in France than the U.S. despite similar alcohol consumption levels in both countries. By contrast, volumes of the hippocampus, amygdala, and cerebellar vermis were smaller in KS in the U.S. than France. Estimated amount of alcohol consumed over a lifetime, duration of alcoholism, and length of sobriety were significant predictors of selective regional brain volumes in France and in the U.S. The common analysis of MRI data enabled identification of discrepancies in brain volume deficits in France and the U.S. that may reflect fundamental differences in the consequences of alcoholism on brain structure between the two countries, possibly related to genetic or environmental differences. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 09/2014; 35(9). DOI:10.1002/hbm.22500 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive flexibility has been associated with prefrontal white matter (WM) integrity in healthy controls (HCs), showing that lower WM integrity is associated with worse performance. Although both cognitive flexibility and WM integrity have been found to be aberrant in alcohol-dependent (AD) patients, the relationship between the two has never been tested. In this study, we investigated the association between WM tract density and cognitive flexibility in patients with AD (n = 26) and HCs (n = 22). In order to assess the influence of AD severity, we also included a group of problematic drinkers (PrDs; n = 23) who did not meet the AD criteria. Behavioral responses and brain activity during a cognitive flexibility task were measured during functional magnetic resonance imaging. Probabilistic fiber tracking was performed between the dorsolateral prefrontal cortex and the basal ganglia; two crucial regions for task switching. Finally, the task-related functional connectivity between these areas was assessed. There were no signifi-cant group differences in the task performance. However, compared with HCs, AD patients and PrDs showed decreased WM integrity and increased prefrontal brain activation during task switching. Evidence is presented for a compensatory mechanism, involving recruitment of additional prefrontal resources in order to compensate for WM and neural function impairments in AD patients and PrDs. Although present in both alcohol groups, the PrDs were more successful in invoking this compensatory mechanism when compared to the AD patients. We propose that this may therefore serve as a protective factor, precluding transition from problematic drinking into alcohol dependence.
    Addiction Biology 12/2014; DOI:10.1111/adb.12199 · 5.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two brain networks are particularly affected by the harmful effect of chronic and excessive alcohol consumption: the circuit of Papez and the frontocerebellar circuit, in both of which the thalamus plays a key role. Shrinkage of the thalamus is more severe in alcoholics with Korsakoff's syndrome (KS) than in those without neurological complication (AL). In accordance with the gradient effect of thalamic abnormalities between AL and KS, the pattern of brain dysfunction in the Papez's circuit results in anterograde amnesia in KS and only mild-to-moderate episodic memory disorders in AL. On the opposite, dysfunction of the frontocerebellar circuit results in a similar pattern of working memory and executive deficits in the AL and KS. Several hypotheses, mutually compatible, can be drawn to explain that the severe thalamic shrinkage observed in KS has different consequences in the neuropsychological profile associated with the two brain networks.
    Neuroscience & Biobehavioral Reviews 08/2014; DOI:10.1016/j.neubiorev.2014.07.023 · 10.28 Impact Factor