A Single Amino Acid Residue Change in the P Protein of Parainfluenza Virus 5 Elevates Viral Gene Expression

Center of Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
Journal of Virology (Impact Factor: 4.44). 08/2008; 82(18):9123-33. DOI: 10.1128/JVI.00289-08
Source: PubMed


Parainfluenza virus 5 (PIV5) is a prototypical paramyxovirus. The V/P gene of PIV5 encodes two mRNA species through a process of pseudotemplated insertion of two G residues at a specific site during transcription, resulting in two viral proteins, V and P, whose N termini of 164 amino acid residues are identical. Previously it was reported that mutating six amino acid residues within this identical region results in a recombinant PIV5 (rPIV5-CPI-) that exhibits elevated viral protein expression and induces production of cytokines, such as beta interferon and interleukin 6. Because the six mutations correspond to the shared region of the V protein and the P protein, it is not clear whether the phenotypes associated with rPIV5-CPI- are due to mutations in the P protein and/or mutations in the V protein. To address this question, we used a minigenome system and recombinant viruses to study the effects of mutations on the functions of the P and V proteins. We found that the P protein with six amino acid residue changes (Pcpi-) was more efficient than wild-type P in facilitating replication of viral RNA, while the V protein with six amino acid residue changes (Vcpi-) still inhibits minigenome replication as does the wild-type V protein. These results indicate that elevated viral gene expression in rPIV5-CPI- virus-infected cells can be attributed to a P protein with an increased ability to facilitate viral RNA synthesis. Furthermore, we found that a single amino acid residue change at position 157 of the P protein from Ser (the residue in the wild-type P protein) to Phe (the residue in Pcpi-) is sufficient for elevated viral gene expression. Using mass spectrometry and (33)P labeling, we found that residue S157 of the P protein is phosphorylated. Based on these results, we propose that phosphorylation of the P protein at residue 157 plays an important role in regulating viral RNA replication.

1 Follower
17 Reads
  • Source
    • "Additionally, PIV5 V negatively regulates the P subunit of the viral RNA polymerase by directly interacting with the kinase Akt1 and inhibiting its ability to phosphorylate the P protein (Sun and others 2008). The ability of the V protein to negatively regulate the activity of the P protein appears of paramount importance in controlling PIV5 viral RNA synthesis (Timani and others 2008). Paramyxovirus V proteins may play other roles in regulating viral replication; HPIV2 V binds to the large RNA polymerase (L) protein (ie, the major RNA polymerase subunit) and inhibits replication (Nishio and others 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimentally, paramyxoviruses are conventionally considered good inducers of type I interferons (IFN-alpha/beta), and have been used as agents in the commercial production of human IFN-alpha. However, in the last few years it has become clear that viruses in general mount a major challenge to the IFN system, and paramyxoviruses are no exception. Indeed, most paramyxoviruses encode mechanisms to inhibit both the production of, and response to, type I IFN. Here we review our knowledge of the type I IFN-inducing signals (by so-called pathogen-associated molecular patterns, or PAMPs) produced during paramyxovirus infections, and discuss how paramyxoviruses limit the production of PAMPs and inhibit the cellular responses to PAMPs by interfering with the activities of the pattern recognition receptors (PRRs), mda-5, and RIG-I, as well as downstream components in the type I IFN induction cascades.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 09/2009; 29(9):539-47. DOI:10.1089/jir.2009.0071 · 2.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paramyxoviruses are a family of negative-sense RNA viruses that includes many important human and animal pathogens. Paramyxovirus RNA synthesis requires the viral phosphoprotein (P) and the large (L) protein. Phosphorylation of P is thought to regulate viral gene expression, though direct proof remains elusive. Recently, we reported that phosphorylation of a specific residue (Ser157) of the P protein of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, correlates with decreased viral gene expression and cytokine expression in infected cells. Here, we show that: Polo-like kinase 1 (PLK1), a serine/theronine kinase that plays a critical role in regulating the cell cycle, interacts with PIV5 P through the S157 residue; PLK1 inhibition increases viral gene expression; PLK1 over-expression inhibits viral gene expression; and PLK1 directly phosphorylates P in vitro, indicating that PLK1 down-regulates viral gene expression by phosphorylating P. Furthermore, we have determined the PLK1 phosphorylation site on P and found that mutant recombinant PIV5 whose P proteins cannot either bind to or be phosphorylated by PLK1 have similar phenotypes. Increased viral gene expression in PIV5 with mutations in the PLK1 binding/phosphorylation sites correlates with increased induction of cell death and cytokine expression, suggesting that PIV5 limits its viral gene expression to avoid these host effects. It is possible that targeting PLK1 will enhance host innate immune responses, leading to a novel strategy of clearing paramyxovirus infections quickly.
    PLoS Pathogens 08/2009; 5(7):e1000525. DOI:10.1371/journal.ppat.1000525 · 7.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the Enders strain of mumps virus (MuV) encodes a functional V protein that acts as an interferon (IFN) antagonist, in multi-cycle growth assays MuV Enders grew poorly in naïve ('IFN-competent' Hep2) cells but grew to high titres in 'IFN-compromised' Hep2 cells. Even so, the growth rate of MuV Enders was significantly slower in 'IFN-compromised' Hep2 cells when compared with its replication rate in Vero cells and with the replication rate of parainfluenza virus type 5 (a closely related paramyxovirus) in both naïve and 'IFN-compromised' Hep2 cells. This suggests that a consequence of slower growth is that the IFN system of naïve Hep2 cells can respond quickly enough to control the growth of MuV Enders. This is supported by the finding that rapidly growing variants of MuV Enders that were selected on 'IFN-compromised' Hep2 cells (i.e. in the absence of any selection pressure exerted by the IFN response) also grew to high titres on naïve Hep2 cells. Sequencing of the complete genome of one of these variants identified a single point mutation that resulted in a substitution of a conserved asparagine by histidine at position 498 of the haemagglutinin-neuraminidase protein, although this mutation was not present in all rapidly growing variants. These results support the concept that there is a race between the ability of a cell to detect and respond to virus infection and the ability of a virus to block the IFN response. Importantly, this emphasizes that factors other than viral IFN antagonists influence the sensitivity of viruses to IFN.
    Journal of General Virology 08/2009; 90(Pt 11):2731-8. DOI:10.1099/vir.0.013722-0 · 3.18 Impact Factor
Show more

Similar Publications

Full-text (3 Sources)

17 Reads
Available from
Jun 6, 2014