Article

A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B.

Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
Journal of Virology (Impact Factor: 5.08). 08/2008; 82(18):9008-22. DOI: 10.1128/JVI.02326-07
Source: PubMed

ABSTRACT The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5' and 3' noncoding regions (5' and 3' NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3' to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a "kissing loop" interaction with the 3' NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5' and 3' sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE), located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral RNA-dependent RNA polymerase and distant RNA domains of the viral genome. This work reports the use of an in vitro selection strategy to select aptamer RNA molecules against the complete HCV-CRE. After six selection cycles, five potential target sites were identified within this domain. Inhibition assays using a sample of representative aptamers showed that the selected RNAs significantly inhibit the replication (>80%) of a subgenomic HCV replicon in Huh-7 cell cultures. These results highlight the potential of aptamer RNA molecules as therapeutic antiviral agents.
    Pharmaceuticals 01/2011; 5(1):49-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: At least six major genotypes of Hepatitis C virus (HCV) cause liver diseases worldwide. The efficacy rates with current standard of care are about 50% against genotype 1, the most prevalent strain in the United States, Europe and Japan. Therefore more effective pan-genotypic therapies are needed. HCV RNA replication provides a number of validated targets for virus-specific and potentially pan-genotypic inhibitors. In vitro assays capturing the different steps of RNA synthesis are needed not only to identify new inhibitors, but also to examine their mechanisms of action. This review attempts to provide a comprehensive summary of the biochemical, cell-based and animal model systems to assess HCV polymerase activity and HCV RNA replication that should be useful for both basic research and applied studies.
    Frontiers in Biology. 7(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complex structures that RNA molecules fold into play important roles in their ability to perform various functions in the cell. The structure and composition of viral RNA influences the ability of the virus to implement the various stages of the viral lifecycle and can influence the severity of the virus effects on the host. Although many individual secondary structures and some tertiary interactions of the Hepatitis C virus genome have previously been identified, the global 3D architecture of the full 9678 nucleotide genome still remains uncertain. One promising technique for the determination of the overall 3D structure of large RNA molecules is nanoimaging with Atomic Force Microscopy. In order to get an idea of the structure of the HCV genome, we imaged the RNA prepared in the presence of Mg2+, which allowed us to observe the compact folded tertiary structure of the viral genome. In addition, to identify individual structural elements of the genome, we imaged the RNA prepared in the absence of Mg2+, which allowed us to visualize the unfolded secondary structure of the genome. We were able to identify a recurring single stranded region of the genome in many of the RNA molecules which was about 58 nm long. This method opens up a whole new avenue for the study of the secondary and tertiary structure of long RNA molecules. This ability to ascertain RNA structure can aid in drawing associations between the structure and the function of the RNA in cells which is vital to the development of potential antiviral therapies.
    Journal of Nanomedicine & Nanotechnology 02/2014; S5(010):1-7. · 5.72 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 19, 2014