Targeting CYP17: established and novel approaches in prostate cancer.

The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK.
Current Opinion in Pharmacology (Impact Factor: 5.44). 08/2008; 8(4):449-57. DOI: 10.1016/j.coph.2008.06.004
Source: PubMed

ABSTRACT There is a growing body of evidence that although medical or surgical castration blocks the generation of gonadal testosterone in prostate cancer, androgens originating from other sources may continue to drive androgen receptor (AR) signaling. Recent studies have demonstrated high intratumoral levels of androgens and continued AR signaling in castration-resistant prostate cancer (CRPC), suggesting that androgens may also be synthesized de novo. Inhibiting the systemic biosynthesis of androgens in CRPC by targeting CYP17 may thus represent a rational therapeutic approach since this enzyme catalyses two key steroid reactions involving 17alpha-hydroxylase and C(17,20)-lyase in the androgen biosynthesis pathway. This review will discuss the rationale for and implications of targeting CYP17 in CRPC and focus on established and novel CYP17 inhibitors, including ketoconazole, abiraterone acetate, and VN/124-1, which are agents currently at different stages of development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is a leading cause of cancer mortality in men and despite high cure rates with surgery and/or radiation, 30-40% of patients will eventually develop advanced disease. Androgen deprivation is the first line therapy for standard of care for men with advanced disease. Eventually however all men will progress to castration-resistant prostate cancer (CRPC). Insight into the molecular mechanisms of androgen resistance has led to the development of alternative novel hormonal agents. Newer hormonal agents such as abiraterone, enzalutamide and TOK-001; and the first cancer vaccine, Sipuleucel T have been approved for use in men with CRPC. The recognition of the importance of bone health and morbidity associated with skeletal related events has led to the introduction of the receptor activator of nuclear factor kappa-B-ligand inhibitor denosumab. Other molecularly targeted therapies have shown promise in pre-clinical studies, but this has not consistently translated into clinical efficacy. It is increasingly evident that CRPC is a heterogeneous disease and an individualized approach directed at identifying primary involvement of specific pathways could maximize the benefit from targeted therapies. This review focuses on targeted therapy for PCa with special emphasis on therapies that have been Food and Drug Administration approved for use in men with CRPC.
    Journal of Carcinogenesis 01/2014; 13:5.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown.METHODS HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM.RESULTSThe HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling.CONCLUSION Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. Prostate © 2014 Wiley Periodicals, Inc.
    The Prostate 05/2014; · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.
    Reproductive biology 03/2014; 14(1):16-24. · 1.22 Impact Factor

Similar Publications