Packing Density of Glycolipid Biosurfactant Monolayers Give a Significant Effect on Their Binding Affinity Toward Immunoglobulin G

Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
Journal of oleo science (Impact Factor: 0.97). 02/2008; 57(8):415-22. DOI: 10.5650/jos.57.415
Source: PubMed


Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature.

1 Read
  • Source
    • "Surfactin is not ribosomally synthesized; it is synthesised by a multifunctional enzyme system as that involved in the synthesis of the peptide antibiotics released from bacilli bacteria [5]. Moreover, B. licheniformis has the ability to produce many surface active lipopeptides [7] [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.
    09/2011; 2011(2090-3138):653654. DOI:10.4061/2011/653654
  • [Show abstract] [Hide abstract]
    ABSTRACT: BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described.
    Biotechnology and Applied Biochemistry 06/2009; 53(Pt 1):39-49. DOI:10.1042/BA20090033 · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
    Journal of Molecular Recognition 11/2009; 23(1):1-64. DOI:10.1002/jmr.1004 · 2.15 Impact Factor
Show more