Article

Identifying autism loci and genes by tracing recent shared ancestry.

Division of Genetics, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
Science (Impact Factor: 31.48). 08/2008; 321(5886):218-23. DOI: 10.1126/science.1157657
Source: PubMed

ABSTRACT To find inherited causes of autism-spectrum disorders, we studied families in which parents share ancestors, enhancing the role of inherited factors. We mapped several loci, some containing large, inherited, homozygous deletions that are likely mutations. The largest deletions implicated genes, including PCDH10 (protocadherin 10) and DIA1 (deleted in autism1, or c3orf58), whose level of expression changes in response to neuronal activity, a marker of genes involved in synaptic changes that underlie learning. A subset of genes, including NHE9 (Na+/H+ exchanger 9), showed additional potential mutations in patients with unrelated parents. Our findings highlight the utility of "homozygosity mapping" in heterogeneous disorders like autism but also suggest that defective regulation of gene expression after neural activity may be a mechanism common to seemingly diverse autism mutations.

0 Bookmarks
 · 
186 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Autism spectrum disorder (ASD) is characterized by three core behavioral domains: social deficits, impaired communication, and repetitive behaviors. Glutamatergic/GABAergic imbalance has been found in various preclinical models of ASD. Additionally, autoimmunity immune dysfunction, and neuroinflammation are also considered as etiological mechanisms of this disorder. This study aimed to elucidate the relationship between glutamatergic/ GABAergic imbalance and neuroinflammation as two recently-discovered autism-related etiological mechanisms.Methods Twenty autistic patients aged 3 to 15 years and 19 age- and gender-matched healthy controls were included in this study. The plasma levels of glutamate, GABA and glutamate/GABA ratio as markers of excitotoxicity together with TNF-¿, IL-6, IFN-¿ and IFI16 as markers of neuroinflammation were determined in both groups.ResultsAutistic patients exhibited glutamate excitotoxicity based on a much higher glutamate concentration in the autistic patients than in the control subjects. Unexpectedly higher GABA and lower glutamate/GABA levels were recorded in autistic patients compared to control subjects. TNF-¿ and IL-6 were significantly lower, whereas IFN-¿ and IFI16 were remarkably higher in the autistic patients than in the control subjects.Conclusion Multiple regression analysis revealed associations between reduced GABA level, neuroinflammation and glutamate excitotoxicity. This study indicates that autism is a developmental synaptic disorder showing imbalance in GABAergic and glutamatergic synapses as a consequence of neuroinflammation.
    Journal of Neuroinflammation 11/2014; 11(1):189. DOI:10.1186/s12974-014-0189-0 · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the transcription factor serum response factor (SRF) has been suggested to play a role in activity-dependent gene expression and mediate plasticity-associated structural changes in the hippocampus, no unequivocal evidence has been provided for its role in brain pathology, such as epilepsy. A genome-wide program of activity-induced genes that are regulated by SRF also remains unknown. In the present study, we show that the inducible and conditional deletion of SRF in the adult mouse hippocampus increases the epileptic phenotype in the kainic acid model of epilepsy, reflected by more severe and frequent seizures. Moreover, we observe a robust decrease in activity-induced gene transcription in SRF knockout mice. We characterize the genetic program controlled by SRF in neurons and using functional annotation, we find that SRF target genes are associated with synaptic plasticity and epilepsy. Several of these SRF targets function as regulators of inhibitory or excitatory balance and the structural plasticity of neurons. Interestingly, mutations in those SRF targets have found to be associated with such human neuropsychiatric disorders, as autism and intellectual disability. We also identify novel direct SRF targets in hippocampus: Npas4, Gadd45g, and Zfp36. Altogether, our data indicate that proteins that are highly upregulated by neuronal stimulation, identified in the present study as SRF targets, may function as endogenous protectors against overactivation. Thus, the lack of these effector proteins in SRF knockout animals may lead to uncontrolled excitation and eventually epilepsy.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the Childhood Autism Rating Scale (CARS), Autism Treatment Evaluation Checklist (ATEC), and Children's Global Assessment Scale (CGAS) after anodal transcranial direct current stimulation (tDCS) in individuals with autism. Twenty patients with autism received 5 consecutive days of both sham and active tDCS stimulation (1 mA) in a randomized double-blind crossover trial over the left dorsolateral prefrontal cortex (F3) for 20 minutes in different orders. Measures of CARS, ATEC, and CGAS were administered before treatment and at 7 days posttreatment. The result showed statistical decrease in CARS score (P < 0.001). ATEC total was decreased from 67.25 to 58 (P < 0.001). CGAS was increased at 7 days posttreatment (P = 0.042). Our study suggests that anodal tDCS over the F3 may be a useful clinical tool in autism.
    Behavioural neurology 01/2014; 2014:173073. DOI:10.1155/2014/173073 · 1.64 Impact Factor

Full-text (3 Sources)

Download
85 Downloads
Available from
May 17, 2014