Endothelin-1 enhances the expression of the androgen receptor via activation of the c-myc pathway in prostate cancer cells.

Urologic Oncology Laboratory, Department of Urology, Weill Cornell Medical College, New York, NY 10021, USA.
Molecular Carcinogenesis (Impact Factor: 4.27). 08/2008; 48(2):141-9.
Source: PubMed

ABSTRACT Increasing evidence suggests that androgen independent prostate cancer (PC) maintains a functional androgen receptor (AR) pathway despite the low levels of circulating androgen following androgen withdrawal, the molecular mechanisms of which are not well defined yet. To address this question, we investigated the effects of endothelin-1 (ET-1) on AR expression. Western analysis and RT-PCR revealed that in the presence of ET-1, levels of AR significantly increased in a time- and dose-dependent manner in LNCaP cells. Pretreatments with inhibitors of Src and phosphoinositide kinase 3 (PI-3K) suppressed ET-1-induced AR expression. As ET-1 was reported to cause a transient increase in c-myc mRNA levels, we examined the involvement of c-myc in ET-1-mediated AR expression. Transient transfection of c-myc siRNA neutralized ET-1-induced AR expression, suggesting that AR induction by ET-1 is c-myc dependent. AR can regulate the transcription of its own gene via a mechanism in which c-myc plays a crucial role. Therefore, we assessed if ET-1-induced-c-myc leads to the enhancement of AR transcription. Reporter gene assays using the previously identified AR gene enhancer containing a c-myc binding site were conducted in LNCaP cells. We found that ET-1 induced reporter gene activity from the construct containing the wild-type but not mutant c-myc binding site. Chromatin immunoprecipitation assays confirmed that ET-1 increased interaction between c-myc and c-myc binding sites in AR enhancer, suggesting that ET-1-induced AR transcription occurs via c-myc-mediated AR transcription. Together, these data support the notion that ET-1, via Src/PI-3K signaling, augments c-myc expression leading to enhanced AR expression in PC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the family aggregation of severe teenage acne, the genetic basis of this common skin condition remains unclear. We conducted a genome-wide association study (GWAS) on severe teenage acne in 928 European Americans. The SNP rs4133274 on chromosome 8q24 (72 kb upstream of MYC) revealed the most significant association with severe teenage acne (p value = 1.7 × 10(-6)). The variant allele of this SNP (G allele) was associated with an increased risk of severe teenage acne with odds ratio of 4.01 (95 % confidence interval = 2.37-6.82). Upon further replication, our findings suggest new genetic basis of acne and may explain the association between acne and cancer risk observed in the epidemiological studies.
    Human Genetics 10/2013; · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs. human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs. intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO and their intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.
    Nitric Oxide 08/2014; 43. · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Previously, we have shown that Y-box binding protein-1 (YB-1) regulates androgen receptor (AR) expression and contributes to castration resistance. However, the mechanism of YB-1 activation remains unknown. In this study, we aimed to elucidate the mechanism and role of YB-1 activation in relation to castration resistance as well as enzalutamide resistance, with a view to developing a novel therapeutic concept for castration-resistant prostate cancer (CRPC) treatment.METHODS The expression and phosphorylation levels of ribosomal S6 kinase 1 (RSK1), YB-1 and AR were examined by quantitative PCR and Western blotting using prostate cancer cells. In addition, the effects of YB-1 inhibition using specific siRNA and small molecule inhibitor SL0101 on AR expression as well as combination treatment with enzalutamide and SL0101 were examined.RESULTSWe found that androgen deprivation, as well as treatment with the next-generation anti-androgen enzalutamide, induced RSK1 and YB-1 activation followed by AR induction, which could be reversed by YB-1 shutdown and RSK inhibitor SL0101. SL0101 and enzalutamide exerted a synergistic tumor-suppressive effect on cell proliferation in androgen-dependent prostate cancer LNCaP cells, as well as castration-resistant C4-2 cells. Furthermore, the phosphorylation levels of RSK1 and YB-1 were elevated in castration- and enzalutamide-resistant cells, compared with their parental cells.CONCLUSIONS Taken together, these findings indicate that RSK1/YB-1 signaling contributes to castration as well as enzalutamide resistance, and that the therapeutic targeting of RSK1/YB-1 signaling would be a promising novel therapy against prostate cancer, especially CRPC when combined with enzalutamide. Prostate © 2014 Wiley Periodicals, Inc.
    The Prostate 04/2014; · 3.57 Impact Factor