Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release.

INSERM U603, CNRS UMR 8154, Laboratoire de Neurophysiologie et Nouvelles Microscopies, 45 rue des Saints Pères, Paris, F-75006 France.
The Journal of Physiology (Impact Factor: 4.54). 01/2012; 590(Pt 4):855-73. DOI: 10.1113/jphysiol.2011.219345
Source: PubMed

ABSTRACT Increases in astrocyte Ca(2+) have been suggested to evoke gliotransmitter release, however, the mechanism of release, the identity of such transmitter(s), and even whether and when such release occurs, are controversial, largely due to the lack of a method for selective and reproducible stimulation of electrically silent astrocytes. Here we show that photoactivation of the light-gated Ca(2+)-permeable ionotropic GluR6 glutamate receptor (LiGluR), and to a lesser extent the new Ca(2+)-translocating channelrhodopsin CatCh, evokes more reliable Ca(2+) elevation than the mutant channelrhodopsin 2, ChR2(H134R) in cultured cortical astrocytes. We used evanescent-field excitation for near-membrane Ca(2+) imaging, and epifluorescence to activate and inactivate LiGluR. By alternating activation and inactivation light pulses, the LiGluR-evoked Ca(2+) rises could be graded in amplitude and duration. The optical stimulation of LiGluR-expressing astrocytes evoked probabilistic glutamate-mediated signalling to adjacent LiGluR-non-expressing astrocytes. This astrocyte-to-astrocyte signalling was insensitive to the inactivation of vesicular release, hemichannels and glutamate-transporters, and sensitive to anion channel blockers. Our results show that LiGluR is a powerful tool to selectively and reproducibly activate astrocytes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundActivation of G protein coupled receptor (GPCR) in astrocytes leads to Ca2+-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood.ResultsWe show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity.ConclusionsOur results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.
    Molecular Brain 02/2015; 8(1). DOI:10.1186/s13041-015-0097- · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
    Frontiers in Cellular Neuroscience 04/2015; 9:144. DOI:10.3389/fncel.2015.00144 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, l-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, d-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1416942112 · 9.81 Impact Factor


Available from
May 26, 2014