Article

Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET.

Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands.
European Journal of Nuclear Medicine (Impact Factor: 4.53). 01/2012; 39(3):512-20. DOI: 10.1007/s00259-011-2008-5
Source: PubMed

ABSTRACT Positron emission tomography (PET) with (89)Zr-ibritumomab tiuxetan can be used to monitor biodistribution of (90)Y-ibritumomab tiuxetan as shown in mice. The aim of this study was to assess biodistribution and radiation dosimetry of (90)Y-ibritumomab tiuxetan in humans on the basis of (89)Zr-ibritumomab tiuxetan imaging, to evaluate whether co-injection of a therapeutic amount of (90)Y-ibritumomab tiuxetan influences biodistribution of (89)Zr-ibritumomab tiuxetan and whether pre-therapy scout scans with (89)Zr-ibritumomab tiuxetan can be used to predict biodistribution of (90)Y-ibritumomab tiuxetan and the dose-limiting organ during therapy.
Seven patients with relapsed B-cell non-Hodgkin's lymphoma scheduled for autologous stem cell transplantation underwent PET scans at 1, 72 and 144 h after injection of ~70 MBq (89)Zr-ibritumomab tiuxetan and again 2 weeks later after co-injection of 15 MBq/kg or 30 MBq/kg (90)Y-ibritumomab tiuxetan. Volumes of interest were drawn over liver, kidneys, lungs, spleen and tumours. Ibritumomab tiuxetan organ absorbed doses were calculated using OLINDA. Red marrow dosimetry was based on blood samples. Absorbed doses to tumours were calculated using exponential fits to the measured data.
The highest (90)Y absorbed dose was observed in liver (3.2 ± 1.8 mGy/MBq) and spleen (2.9 ± 0.7 mGy/MBq) followed by kidneys and lungs. The red marrow dose was 0.52 ± 0.04 mGy/MBq, and the effective dose was 0.87 ± 0.14 mSv/MBq. Tumour absorbed doses ranged from 8.6 to 28.6 mGy/MBq. Correlation between predicted pre-therapy and therapy organ absorbed doses as based on (89)Zr-ibritumomab tiuxetan images was high (Pearson correlation coefficient r = 0.97). No significant difference between pre-therapy and therapy tumour absorbed doses was found, but correlation was lower (r = 0.75).
Biodistribution of (89)Zr-ibritumomab tiuxetan is not influenced by simultaneous therapy with (90)Y-ibritumomab tiuxetan, and (89)Zr-ibritumomab tiuxetan scout scans can thus be used to predict biodistribution and dose-limiting organ during therapy. Absorbed doses to spleen were lower than those previously estimated using (111)In-ibritumomab tiuxetan. The dose-limiting organ in patients undergoing stem cell transplantation is the liver.

0 Bookmarks
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advent of antibody-based cancer therapeutics has led to the concomitant rise in the development of companion diagnostics for these therapies, particularly nuclear imaging agents. A number of radioisotopes have been employed for antibody-based PET and SPECT imaging, notably 64Cu, 124I, 111In, and 99mTc; in recent years, however, the field has increasingly focused on 89Zr, a radiometal with near ideal physical and chemical properties for immunoPET imaging. In the review at hand, we seek to provide a comprehensive portrait of the current state of 89Zr radiochemical and imaging research, including work into the production and purification of the isotope, the synthesis of new chelators, the development of new bioconjugation strategies, the creation of novel 89Zr-based agents for preclinical imaging studies, and the translation of 89Zr-labeled radiopharmaceuticals to the clinic. Particular attention will also be dedicated to emerging trends in the field, 89Zr-based imaging applications using vectors other than antibodies, the comparative advantages and limitations of 89Zr-based imaging compared to that with other isotopes, and areas that would benefit from more extensive investigation. At bottom, it is hoped that this review will provide both the experienced investigator and new scientist with a full and critical overview of this exciting and fast-developing field.
    Nuclear Medicine and Biology 01/2013; 40(1):3–14. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear medicine imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have played a prominent role in lymphoma management. PET with [(18)F]Fluoro-2-deoxy-D-glucose (FDG) is the most commonly used tool for lymphoma imaging. However, FDG-PET has several limitations that give the false positive or false negative diagnosis of lymphoma. Therefore, development of new radiotracers with higher sensitivity, specificity, and different uptake mechanism is in great demand in the management of lymphoma. This paper reviews non-FDG radiopharmaceuticals that have been applied for PET and SPECT imaging in patients with different types of lymphoma, with attention to diagnosis, staging, therapy response assessment, and surveillance for disease relapse. In addition, we introduce three radiolabeled anti-CD20 antibodies for radioimmunotherapy, which is another important arm for lymphoma treatment and management. Finally, the relatively promising radiotracers that are currently under preclinical development are also discussed in this paper.
    BioMed research international. 01/2013; 2013:626910.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
    Pharmacological reviews 01/2013; 65(4):1214-56. · 17.00 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
May 23, 2014