Article

Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET.

Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands.
European Journal of Nuclear Medicine (Impact Factor: 4.53). 01/2012; 39(3):512-20. DOI:10.1007/s00259-011-2008-5
Source: PubMed

ABSTRACT Positron emission tomography (PET) with (89)Zr-ibritumomab tiuxetan can be used to monitor biodistribution of (90)Y-ibritumomab tiuxetan as shown in mice. The aim of this study was to assess biodistribution and radiation dosimetry of (90)Y-ibritumomab tiuxetan in humans on the basis of (89)Zr-ibritumomab tiuxetan imaging, to evaluate whether co-injection of a therapeutic amount of (90)Y-ibritumomab tiuxetan influences biodistribution of (89)Zr-ibritumomab tiuxetan and whether pre-therapy scout scans with (89)Zr-ibritumomab tiuxetan can be used to predict biodistribution of (90)Y-ibritumomab tiuxetan and the dose-limiting organ during therapy.
Seven patients with relapsed B-cell non-Hodgkin's lymphoma scheduled for autologous stem cell transplantation underwent PET scans at 1, 72 and 144 h after injection of ~70 MBq (89)Zr-ibritumomab tiuxetan and again 2 weeks later after co-injection of 15 MBq/kg or 30 MBq/kg (90)Y-ibritumomab tiuxetan. Volumes of interest were drawn over liver, kidneys, lungs, spleen and tumours. Ibritumomab tiuxetan organ absorbed doses were calculated using OLINDA. Red marrow dosimetry was based on blood samples. Absorbed doses to tumours were calculated using exponential fits to the measured data.
The highest (90)Y absorbed dose was observed in liver (3.2 ± 1.8 mGy/MBq) and spleen (2.9 ± 0.7 mGy/MBq) followed by kidneys and lungs. The red marrow dose was 0.52 ± 0.04 mGy/MBq, and the effective dose was 0.87 ± 0.14 mSv/MBq. Tumour absorbed doses ranged from 8.6 to 28.6 mGy/MBq. Correlation between predicted pre-therapy and therapy organ absorbed doses as based on (89)Zr-ibritumomab tiuxetan images was high (Pearson correlation coefficient r = 0.97). No significant difference between pre-therapy and therapy tumour absorbed doses was found, but correlation was lower (r = 0.75).
Biodistribution of (89)Zr-ibritumomab tiuxetan is not influenced by simultaneous therapy with (90)Y-ibritumomab tiuxetan, and (89)Zr-ibritumomab tiuxetan scout scans can thus be used to predict biodistribution and dose-limiting organ during therapy. Absorbed doses to spleen were lower than those previously estimated using (111)In-ibritumomab tiuxetan. The dose-limiting organ in patients undergoing stem cell transplantation is the liver.

0 0
 · 
0 Bookmarks
 · 
129 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: These studies focused on a new radiolabeling technique with copper ((64)Cu) and zirconium ((89)Zr) for positron emission tomography (PET) imaging using a CD45 antibody. Synthesis of (64)Cu-CD45 and (89)Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC) was assessed in vitro (viability, population doubling times, colony forming units). hPBSC viability was maintained as the dose of (64)Cu-TETA-CD45 increased from 0 (92%) to 160 µCi/mL (76%, p>0.05). Radiolabeling efficiency was not significantly increased with concentrations of (64)Cu-TETA-CD45 >20 µCi/mL (p>0.50). Toxicity affecting both growth and colony formation was observed with hPBSC radiolabeled with ≥40 µCi/mL (p<0.05). For (89)Zr, there were no significant differences in viability (p>0.05), and a trend towards increased radiolabeling efficiency was noted as the dose of (89)Zr-Df-CD45 increased, with a greater level of radiolabeling with 160 µCi/mL compared to 0-40 µCi/mL (p<0.05). A greater than 2,000 fold-increase in the level of (89)Zr-Df-CD45 labeling efficiency was observed when compared to (64)Cu-TETA-CD45. Similar to (64)Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with ≥40 µCi/mL (p<0.05) (growth, colony formation). Taken together, 20 µCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young rhesus monkeys that had been transplanted prenatally with 25×10(6) hPBSC expressing firefly luciferase were assessed with bioluminescence imaging (BLI), then 0.3 mCi of (89)Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected intravenously for PET imaging. Results suggest that (89)Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations identified by BLI, although the background was high.
    PLoS ONE 01/2013; 8(10):e77148. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Nuclear medicine imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have played a prominent role in lymphoma management. PET with [(18)F]Fluoro-2-deoxy-D-glucose (FDG) is the most commonly used tool for lymphoma imaging. However, FDG-PET has several limitations that give the false positive or false negative diagnosis of lymphoma. Therefore, development of new radiotracers with higher sensitivity, specificity, and different uptake mechanism is in great demand in the management of lymphoma. This paper reviews non-FDG radiopharmaceuticals that have been applied for PET and SPECT imaging in patients with different types of lymphoma, with attention to diagnosis, staging, therapy response assessment, and surveillance for disease relapse. In addition, we introduce three radiolabeled anti-CD20 antibodies for radioimmunotherapy, which is another important arm for lymphoma treatment and management. Finally, the relatively promising radiotracers that are currently under preclinical development are also discussed in this paper.
    BioMed research international. 01/2013; 2013:626910.
  • [show abstract] [hide abstract]
    ABSTRACT: Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
    Pharmacological reviews 01/2013; 65(4):1214-56. · 17.00 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
Nov 27, 2012