Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity.

Howard Hughes Medical Institute, Department of Pediatrics, Graduate Program in Cell Biology, Stem Cells, and Development, Children's Hospital Colorado, University of Colorado, Aurora, Colorado 80045, USA.
Genes & development (Impact Factor: 12.64). 01/2012; 26(1):69-81. DOI: 10.1101/gad.179283.111
Source: PubMed

ABSTRACT Hirschsprung disease (HSCR) is caused by a reduction of enteric neural crest cells (ENCCs) in the gut and gastrointestinal blockage. Knowledge of the genetics underlying HSCR is incomplete, particularly genes that control cellular behaviors of ENCC migration. Here we report a novel regulator of ENCC migration in mice. Disruption of the Phactr4 gene causes an embryonic gastrointestinal defect due to colon hypoganglionosis, which resembles human HSCR. Time-lapse imaging of ENCCs within the embryonic gut demonstrates a collective cell migration defect. Mutant ENCCs show undirected cellular protrusions and disrupted directional and chain migration. Phactr4 acts cell-autonomously in ENCCs and colocalizes with integrin and cofilin at cell protrusions. Mechanistically, we show that Phactr4 negatively regulates integrin signaling through the RHO/ROCK pathway and coordinates protein phosphatase 1 (PP1) with cofilin activity to regulate cytoskeletal dynamics. Strikingly, lamellipodia formation and in vivo ENCC chain migration defects are rescued by inhibition of ROCK or integrin function. Our results demonstrate a previously unknown pathway in ENCC collective migration in vivo and provide new candidate genes for human genetic studies of HSCR.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
    Journal of Clinical Investigation 02/2015; DOI:10.1172/JCI76307 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.
    Oncotarget 12/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic cell migration patterns are amazingly complex in the timing and spatial distribution of cells throughout the vertebrate landscape. However, advances in in vivo visualization, cell interrogation, and computational modeling are extracting critical features that underlie the mechanistic nature of these patterns. The focus of this review highlights recent advances in the study of the highly invasive neural crest cells and their migratory patterns during embryonic development. We discuss these advances within three major themes and include a description of computational models that have emerged to more rapidly integrate and test hypothetical mechanisms of neural crest migration. We conclude with technological advances that promise to reveal new insights and help translate results to human neural crest-related birth defects and metastatic cancer.
    01/2015; 7:02. DOI:10.12703/P7-02


Available from