Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1

Molecular Histology and Cell Growth, DIBIT-HSR, Milan, Italy.
PLoS ONE (Impact Factor: 3.53). 12/2011; 6(12):e29136. DOI: 10.1371/journal.pone.0029136
Source: PubMed

ABSTRACT Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.

Download full-text


Available from: Anne Beugnet, Jun 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.
    PLoS ONE 08/2013; 8(8):e71138. DOI:10.1371/journal.pone.0071138 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin inhibits products of molecular pathways in esophageal squamous cell carcinoma and limits tumor cell growth by targeting 4E-BP1- and eIF4E-dependent gene translation. In this study, we investigate the influence of 4E-BP1-to-eIF4E ratio on rapamycin response in esophageal squamous cell carcinoma cells, and the underlying mechanism is discussed. The response to rapamycin treatment was examined in 6 esophageal cancer cell lines. Adjustment of the 4E-BP1/eIF4E ratio was carried out by knockdown or overexpression of 4E-BP1 and eIF4E. The relationship between Egr-1 and 4E-BP1 expression in esophageal cancer cells was also studied. The 4E-BP1/eIF4E ratio was adjusted to evaluate the response to rapamycin treatment in TE1 and TE2 esophageal cancer cells. TE2 cells are sensitized to rapamycin treatment after overexpression of 4E-BP1 or knockdown of eIF4E; TE1 cells become resistant to rapamycin after knockdown of 4E-BP1 or overexpression of eIF4E. These data suggest that the 4E-BP1/eIF4E ratio is a determinant for the response of TE1 and TE2 cells to rapamycin treatment. Egr-1 expression was higher in TE2 cells compared with other esophageal cancer cell lines, and its knockdown increased 4E-BP1 expression in TE2 cells, which became sensitive to rapamycin treatment. The 4E-BP1/eIF4E ratio is a determinant of the response of rapamycin treatment in esophageal cancer cells. Egr-1 can reduce 4E-BP1 gene expression and render esophageal squamous cell carcinoma cells resistant to rapamycin with a relatively low 4E-BP1/eIF4E ratio. Thus, the 4E-BP1/eIF4E ratio may represent a therapeutic index for the prediction of clinical outcome of rapamycin treatment in patients with esophageal squamous cell carcinoma. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
    Journal of Thoracic and Cardiovascular Surgery 09/2014; 149(1). DOI:10.1016/j.jtcvs.2014.09.047 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The selection and regulation of individual mRNAs for translation initiation from a competing pool of mRNA are poorly understood processes. The closed loop complex, comprising eIF4E, eIF4G and PABP, and its regulation by 4E-BPs are perceived to be key players. Using RIP-seq, we aimed to evaluate the role in gene regulation of the closed loop complex and 4E-BP regulation across the entire yeast transcriptome. Results We find that there are distinct populations of mRNAs with coherent properties: one mRNA pool contains many ribosomal protein mRNAs and is enriched specifically with all of the closed loop translation initiation components. This class likely represents mRNAs that rely heavily on the closed loop complex for protein synthesis. Other heavily translated mRNAs are apparently under-represented with most closed loop components except Pab1p. Combined with data showing a close correlation between Pab1p interaction and levels of translation, these data suggest that Pab1p is important for the translation of these mRNAs in a closed loop independent manner. We also identify a translational regulatory mechanism for the 4E-BPs; these appear to self-regulate by inhibiting translation initiation of their own mRNAs. Conclusions Overall, we show that mRNA selection for translation initiation is not as uniformly regimented as previously anticipated. Components of the closed loop complex are highly relevant for many mRNAs, but some heavily translated mRNAs interact poorly with this machinery. Therefore, alternative, possibly Pab1p-dependent mechanisms likely exist to load ribosomes effectively onto mRNAs. Finally, these studies identify and characterize a complex self-regulatory circuit for the yeast 4E-BPs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0559-z) contains supplementary material, which is available to authorized users.
    Genome Biology 12/2015; 16(1):10. DOI:10.1186/s13059-014-0559-z · 10.30 Impact Factor