Article

Functional RNA Interference (RNAi) Screen Identifies System A Neutral Amino Acid Transporter 2 (SNAT2) as a Mediator of Arsenic-induced Endoplasmic Reticulum Stress

Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2012; 287(8):6025-34. DOI: 10.1074/jbc.M111.311217
Source: PubMed

ABSTRACT Exposure to the toxic metalloid arsenic is associated with diabetes and cancer and causes proteotoxicity and endoplasmic reticulum (ER) stress at the cellular level. Adaptive responses to ER stress are implicated in cancer and diabetes; thus, understanding mechanisms of arsenic-induced ER stress may offer insights into pathogenesis. Here, we identify genes required for arsenite-induced ER stress response in a genome-wide RNAi screen. Using an shRNA library targeting ∼20,000 human genes, together with an ER stress cell model, we performed flow cytometry-based cell sorting to isolate cells with defective response to arsenite. Our screen discovered several genes modulating arsenite-induced ER stress, including sodium-dependent neutral amino acid transporter, SNAT2. SNAT2 expression and activity are up-regulated by arsenite, in a manner dependent on activating transcription factor 4 (ATF4), an important mediator of the integrated stress response. Inhibition of SNAT2 expression or activity or deprivation of its primary substrate, glutamine, specifically suppressed ER stress induced by arsenite but not tunicamycin. Induction of SNAT2 is coincident with the activation of the nutrient-sensing mammalian target of rapamycin (mTOR) pathway, which is at least partially required for arsenite-induced ER stress. Importantly, inhibition of the SNAT2 or the System L transporter, LAT1, suppressed mTOR activation by arsenite, supporting a role for these transporters in modulating amino acid signaling. These findings reveal SNAT2 as an important and specific mediator of arsenic-induced ER stress, and suggest a role for aberrant mTOR activation in arsenic-related human diseases. Furthermore, this study demonstrates the utility of RNAi screens in elucidating cellular mechanisms of environmental toxins.

0 Followers
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present experiment aimed to compare the two most commonly used compounds of arsenic (sodium arsenite and arsenic trioxide) for their effect on blood metabolites, thyroid hormones, and oxidant/antioxidant status in guinea pigs. Twenty-one adult guinea pigs were randomly divided into three equal groups. Animals in group T1 (control) were fed a basal diet, whereas 50 ppm arsenic was added in the basal diet either as sodium arsenite (T2) or arsenic trioxide (T3) and fed for 11 weeks. Serum aspartate aminotransferase and alanine aminotransferase activities were significantly increased along with a decrease in blood hemoglobin level in both the arsenic-administered groups. The level of erythrocytic antioxidants (catalase, superoxide dismutase, reduced glutathione, glutathione-S-transferase, and glutathione reductase) was decreased and lipid peroxidation was elevated upon arsenic exposure. Serum thyroid hormone levels were reduced and arsenic levels in tissues increased in both the arsenic-exposed groups, irrespective of the arsenic compound. Thus, sodium arsenite and arsenic trioxide exerted similar adverse effects on blood metabolic profile, antioxidant status, and thyroid hormones in guinea pigs.
    Biological Trace Element Research 06/2014; DOI:10.1007/s12011-014-0041-5 · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal day (PD) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1-CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress.
    Toxicology and Applied Pharmacology 01/2015; 283(3). DOI:10.1016/j.taap.2014.12.019 · 3.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
    Pflügers Archiv - European Journal of Physiology 11/2013; 466(1). DOI:10.1007/s00424-013-1393-y · 3.07 Impact Factor