Article

Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase

Université catholique de Louvain, Brussels, Belgium.
Biochemical Journal (Impact Factor: 4.78). 01/2012; 442(3):681-92. DOI: 10.1042/BJ20111530
Source: PubMed

ABSTRACT eEF2K [eEF2 (eukaryotic elongation factor 2) kinase] phosphorylates and inactivates the translation elongation factor eEF2. eEF2K is not a member of the main eukaryotic protein kinase superfamily, but instead belongs to a small group of so-called α-kinases. The activity of eEF2K is normally dependent upon Ca(2+) and calmodulin. eEF2K has previously been shown to undergo autophosphorylation, the stoichiometry of which suggested the existence of multiple sites. In the present study we have identified several autophosphorylation sites, including Thr(348), Thr(353), Ser(366) and Ser(445), all of which are highly conserved among vertebrate eEF2Ks. We also identified a number of other sites, including Ser(78), a known site of phosphorylation, and others, some of which are less well conserved. None of the sites lies in the catalytic domain, but three affect eEF2K activity. Mutation of Ser(78), Thr(348) and Ser(366) to a non-phosphorylatable alanine residue decreased eEF2K activity. Phosphorylation of Thr(348) was detected by immunoblotting after transfecting wild-type eEF2K into HEK (human embryonic kidney)-293 cells, but not after transfection with a kinase-inactive construct, confirming that this is indeed a site of autophosphorylation. Thr(348) appears to be constitutively autophosphorylated in vitro. Interestingly, other recent data suggest that the corresponding residue in other α-kinases is also autophosphorylated and contributes to the activation of these enzymes [Crawley, Gharaei, Ye, Yang, Raveh, London, Schueler-Furman, Jia and Cote (2011) J. Biol. Chem. 286, 2607-2616]. Ser(366) phosphorylation was also detected in intact cells, but was still observed in the kinase-inactive construct, demonstrating that this site is phosphorylated not only autocatalytically but also in trans by other kinases.

Download full-text

Full-text

Available from: Nusrat Hussain, Jul 03, 2015
0 Followers
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.
    Biochemistry 03/2012; 51(11):2232-45. DOI:10.1021/bi201788e · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein synthesis is energetically costly and is tightly regulated by evolutionarily conserved mechanisms. Under restrictive growth conditions and in response to various stresses, such as DNA damage, cells inhibit protein synthesis to redirect available adenosine triphosphate to more essential processes. Conversely, proliferating cells, such as cancer cells, increase protein synthetic rates to support growth-related anabolic processes. mRNA translation occurs in three separate phases, consisting of initiation, elongation, and termination. Although all three phases are highly regulated, most of the translational control occurs at the rate-limiting initiation step. New evidence has described a molecular mechanism involved in the regulation of translation elongation. DNA damage initially slowed down elongation rates by activating the eukaryotic elongation factor 2 kinase (eEF2K) through an adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanism. However, during checkpoint recovery, the SCF (Skp, Cullin, F-box-containing) βTrCP (β-transducin repeat-containing protein) E3 ubiquitin ligase promoted degradation of eEF2K, thereby allowing the restoration of peptide chain elongation. These findings establish an important link between DNA damage signaling and the regulation of translation elongation.
    Science Signaling 06/2012; 5(227):pe25. DOI:10.1126/scisignal.2003163 · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli uses the DsbA/DsbB system for introducing disulphide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulphide bond formation but does not entirely eliminate it. Whether such background disulphide bond forming activity is enzyme-catalysed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulphide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulphide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulphide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulphenic acid form and reacts with substrate proteins to form mixed disulphide adducts. DsbC either prevents the formation of these mixed disulphides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyse disulphide bond formation. Although this PspE/DsbC system is not responsible for the background disulphide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system.
    Molecular Microbiology 07/2012; 85(5):996-1006. DOI:10.1111/j.1365-2958.2012.08157.x · 5.03 Impact Factor