Endotoxin-induced cytokine and chemokine expression in the HIV-1 transgenic rat

Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
Journal of Neuroinflammation (Impact Factor: 4.9). 01/2012; 9:3. DOI: 10.1186/1742-2094-9-3
Source: PubMed

ABSTRACT Repeated exposure to a low dose of a bacterial endotoxin such as lipopolysaccharide (LPS) causes immune cells to become refractory to a subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance (ET). During ET, there is an imbalance in pro- and anti-inflammatory cytokine and chemokine production, leading to a dysregulated immune response. HIV-1 viral proteins are known to have an adverse effect on the immune system. However, the effects of HIV-1 viral proteins during ET have not been investigated.
In this study, HIV-1 transgenic (HIV-1Tg) rats and control F344 rats (n = 12 ea) were randomly treated with 2 non-pyrogenic doses of LPS (LL) to induce ET, or saline (SS), followed by a high challenge dose of LPS (LL+L, SS+L) or saline (LL+S, SS+S). The gene expression of 84 cytokines, chemokines, and their receptors in the brain and spleen was examined by relative quantitative PCR using a PCR array, and protein levels in the brain, spleen, and serum of 7 of these 84 genes was determined using an electrochemiluminescent assay.
In the spleen, there was an increase in key pro-inflammatory (IL1α, IL-1β, IFN-γ) and anti-inflammatory (IL-10) cytokines, and inflammatory chemokines (Ccl2, Ccl7, and Ccl9,) in response to LPS in the SS+L and LL+L (ET) groups of both the HIV-1Tg and F344 rats, but was greater in the HIV-1Tg rats than in the F344. In the ET HIV-1Tg and F344 (LL+L) rats in the spleen, the LPS-induced increase in pro-inflammatory cytokines was diminished and that of the anti-inflammatory cytokine was enhanced compared to the SS+L group rats. In the brain, IL-1β, as well as the Ccl2, Ccl3, and Ccl7 chemokines were increased to a greater extent in the HIV-1Tg rats compared to the F344; whereas Cxcl1, Cxcl10, and Cxcl11 were increased to a greater extent in the F344 rats compared to the HIV-1Tg rats in the LL+L and SS+L groups.
Our data indicate that the continuous presence of HIV-1 viral proteins can have tissue-dependent effects on endotoxin-induced cytokine and chemokine expression in the ET state.


Available from: Natasha F Homji, May 24, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
    International Review of Neurobiology 01/2014; 118C:403-440. DOI:10.1016/B978-0-12-801284-0.00013-0 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.
    PLoS ONE 08/2014; 9(8):e105256. DOI:10.1371/journal.pone.0105256 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persons infected with HIV-1 often develop neurologic disorders despite receiving highly active anti-retroviral therapy. Although the underlying mechanism is largely undetermined, our previous RNA-seq-based study showed that the expression of many genes was altered in the central nervous system (CNS) of HIV-1 transgenic (HIV-1Tg) rats. Because nicotine, a natural agonist of nicotinic acetylcholine receptors, exhibits a neuroprotective effect, we presently tested the hypothesis that nicotine restores the expression of altered genes in the CNS of HIV-1Tg rats. Adult male HIV-1Tg and F344 control strain rats were injected with either nicotine (0.25 mg/kg) or saline subcutaneously twice a day for 17 days. Gene expression in the prefrontal cortex (PFC), dorsal hippocampus (HIP), and dorsal striatum (STR) was evaluated using the RNA deep sequencing technique. We found that about 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats. Specifically, the two most significantly restored pathways were Wnt/β-catenin signaling and ephrin B signaling in the PFC, cAMP-responsive element-binding protein (CREB) signaling and glutathione metabolism pathway in the HIP, and tricarboxylic acid (TCA) cycle and calcium signaling in the STR. Together, our findings indicate that cholinergic modulators such as nicotine have beneficial effects on HIV-1-induced neurologic deficits.
    PLoS ONE 07/2013; 8(7):e68517. DOI:10.1371/journal.pone.0068517 · 3.53 Impact Factor