Article

A new chronological survival assay in mammalian cell culture

Department of Pathology, University of Washington, Seattle, WA, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 01/2012; 11(2):201-2. DOI: 10.4161/cc.11.2.18959
Source: PubMed
0 Followers
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TOR (target of rapamycin) pathway is involved in aging in diverse organisms from yeast to mammals. We have previously demonstrated in human and rodent cells that mTOR converts stress-induced cell cycle arrest to irreversible senescence (geroconversion), whereas rapamycin decelerates or suppresses geroconversion during cell cycle arrest. Here, we investigated whether rapamycin can suppress replicative senescence of rodent cells. Mouse embryonic fibroblasts (MEFs) gradually acquired senescent morphology and ceased proliferation. Rapamycin decreased cellular hypertrophy, and SA-β-Gal staining otherwise developed by 4-6 passages, but it blocked cell proliferation, masking its effects on replicative lifespan. We determined that rapamycin inhibited pS6 at 100-300 pM and inhibited proliferation with IC(50) around 30 pM. At 30 pM, rapamycin partially suppressed senescence. However, the gerosuppressive effect was balanced by the cytostatic effect, making it difficult to suppress senescence without causing quiescence. We also investigated rat embryonic fibroblasts (REFs), which exhibited markers of senescence at passage 7, yet were able to slowly proliferate until 12-14 passages. REFs grew in size, acquired a large, flat cell morphology, SA-β-Gal staining and components of DNA damage response (DDR), in particular, γH2AX/53BP1 foci. Incubation of REFs with rapamycin (from passage 7 to passage 10) allowed REFs to overcome the replicative senescence crisis. Following rapamycin treatment and removal, a fraction of proliferating REFs gradually increased and senescent phenotype disappeared completely by passage 24.
    Cell cycle (Georgetown, Tex.) 06/2012; 11(12):2402-7. DOI:10.4161/cc.20882 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.
    Cell cycle (Georgetown, Tex.) 08/2012; 11(16):3087-96. DOI:10.4161/cc.21465 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During chronological aging of budding yeast cells, the culture medium can become acidified, and this acidification limits cell survival. As a consequence, buffering the culture medium to pH 6 significantly extends chronological life span under standard conditions in synthetic medium. In this study, we assessed whether a similar process occurs during replicative aging of yeast cells. We find no evidence that buffering the pH of the culture medium to pH levels either higher or lower than the initial pH of the medium is able to significantly extend replicative lifespan. Thus, we conclude that, unlike chronological life span, replicative life span is not limited by acidification of the culture medium or by changes in the pH of the environment.
    01/2013; 2:216. DOI:10.12688/f1000research.2-216.v1