Article

Resting-state oscillatory activity in autism spectrum disorders.

Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 2nd Floor Wood Bldg., Room 2115, Mail Stop W02-1010, Philadelphia, PA 19104-4399, USA.
Journal of Autism and Developmental Disorders (Impact Factor: 3.06). 12/2011; 42(9):1884-94. DOI: 10.1007/s10803-011-1431-6
Source: PubMed

ABSTRACT Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier Transform was applied and oscillatory activity examined from 1 to 120 Hz at 15 regional sources. Associations between oscillatory anomalies and symptom severity were probed. Children with ASD exhibited regionally specific elevations in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and high frequency (20-120 Hz) power, supporting an imbalance of neural excitation/inhibition as a neurobiological feature of ASD. Increased temporal and parietal alpha power was associated with greater symptom severity and thus is of particular interest.

0 Bookmarks
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism is a behaviorally diagnosed neurodevelopmental disorder with no current biomarkers with high specificity and sensitivity. γ-band abnormalities have been reported in many studies of autism spectrum disorders. γ-band activity is associated with perceptual and cognitive functions that are compromised in autism. Some γ-band deficits have also been seen in unaffected first-degree relatives, suggesting heritability of these findings. This review covers the published literature on γ abnormalities in autism, the proposed mechanisms underlying the deficits and the potential for translation into new treatments. Although the utility of γ-band metrics as diagnostic biomarkers is currently limited, such changes in autism are also useful as endophenotypes, for evaluating potential neural mechanisms, and for use as surrogate markers of treatment response to interventions.
    Biomarkers in Medicine 03/2014; 8(3):353-68. · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) includes deficits in social cognition, communication, and executive function. Recent neuroimaging studies suggest that ASD disrupts the structural and functional organization of brain networks and, presumably, how they generate information. Here, we relate deficits in an aspect of cognitive control to network-level disturbances in information processing. We recorded magnetoencephalography while children with ASD and typically developing controls performed a set-shifting task designed to test mental flexibility. We used multiscale entropy (MSE) to estimate the rate at which information was generated in a set of sources distributed across the brain. Multivariate partial least-squares analysis revealed 2 distributed networks, operating at fast and slow time scales, that respond completely differently to set shifting in ASD compared with control children, indicating disrupted temporal organization within these networks. Moreover, when typically developing children engaged these networks, they achieved faster reaction times. When children with ASD engaged these networks, there was no improvement in performance, suggesting that the networks were ineffective in children with ASD. Our data demonstrate that the coordination and temporal organization of large-scale neural assemblies during the performance of cognitive control tasks is disrupted in children with ASD, contributing to executive function deficits in this group.
    Cerebral Cortex 04/2014; · 6.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lexical access during speech comprehension comprises numerous computations, including activation, competition, and selection. The spatio-temporal profile of these processes involves neural activity in peri-auditory cortices at least as early as 200ms after stimulation. Their oscillatory dynamics are less well understood, although reports link alpha band de-synchronization with lexical processing. We used magnetoencephalography (MEG) to examine whether these alpha-related oscillations reflect the speed of lexical access, as would be predicted if they index lexical activation. In an auditory semantic priming protocol, monosyllabic nouns were presented while participants performed a lexical decision task. Spatially-localizing beamforming was used to examine spectro-temporal effects in left and right auditory cortex time-locked to target word onset. Alpha and beta de-synchronization (10-20Hz ERD) was attenuated for words following a related prime compared to an unrelated prime beginning about 270ms after stimulus onset. This timing is consistent with how information about word identity unfolds incrementally in speech, quantified in information-theoretic terms. These findings suggest that alpha de-synchronization during auditory word processing is associated with early stages of lexical access.
    Brain and Language 04/2014; 133C:39-46. · 3.39 Impact Factor

Full-text (2 Sources)

View
21 Downloads
Available from
Jun 1, 2014