Article

Altered CSF orexin and α-synuclein levels in dementia patients.

Molecular Memory Research Unit, The Wallenberg Laboratory, Skåne University Hospital (SUS) Malmö, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 12/2011; 29(1):125-32. DOI: 10.3233/JAD-2012-111655
Source: PubMed

ABSTRACT Neurodegenerative dementia, most frequently represented by Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), is often accompanied by altered sleeping patterns and excessive daytime sleepiness. Studies showing an association between the neuropeptide orexin and AD/DLB-related processes such as amyloid-β (Aβ)1-42 plaque formation, α-synuclein accumulation and inflammation indicate that orexin might play a pathogenic role similar to the situation in narcolepsy. Our study of patients with AD (n = 26), DLB (n = 18), and non-demented controls (n = 24) shows a decrease in cerebrospinal fluid (CSF) orexin concentrations in DLB versus AD patients and controls. The observed differences in orexin levels were found to be specific to female DLB patients. We also show that the female DLB patients exclusively displayed lower levels of α-synuclein compared to AD patients and controls. Orexin was linked to α-synuclein and total-tau in female non-demented controls whereas associations between orexin and Aβ1-42 concentrations were absent in all groups regardless of gender. Thus, the proposed links between orexin, Aβ, and α-synuclein pathology could not be monitored in CSF protein concentrations. Interestingly, α-synuclein was strongly correlated to the CSF levels of total-Tau in all groups, suggesting α-synuclein to be an unspecific marker of neurodegeneration. We conclude that lower levels of CSF orexin are specific to DLB versus AD and appear unrelated to Aβ1-42 and α-synuclein levels in AD and DLB. Alterations in CSF orexin and α-synuclein levels may be related to gender which warrants further investigation.

Download full-text

Full-text

Available from: Henrietta M Nielsen, Jun 17, 2015
1 Follower
 · 
249 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sleep disorders are frequently reported in Alzheimer's disease (AD), with a significant impact on patients and caregivers and a major risk factor for early institutionalization. Although changes in sleep organization are a hallmark of the normal aging processes, sleep macro- and micro-architectural alterations are more evident in patients affected by AD. Degeneration of neural pathways regulating sleep-wake patterns and sleep architecture may contribute to sleep alterations. In return, several recent studies suggested that common sleep disorders may precede clinical symptoms of dementia and represent risk factors for cognitive decline, through impairment of sleep-dependent memory consolidation processes. Thus, a close relationship between sleep disorders and AD has been largely hypothesized. Here, sleep alterations in AD and its pre-dementia stage, mild cognitive impairment, and their complex interactions are reviewed.
    Journal of Alzheimer's disease: JAD 04/2015; DOI:10.3233/JAD-150138 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excessive daytime sleepiness (EDS) is a ubiquitous problem that affects public health and safety. A test that can reliably identify individuals that suffer from EDS is needed. In contrast to other methods, salivary biomarkers are an objective, inexpensive, and noninvasive method to identify individuals with inadequate sleep. Although we have previously shown that inflammatory genes are elevated in saliva samples taken from sleep deprived individuals, it is unclear if inflammatory genes will be elevated in clinical populations with EDS. In this study, salivary samples from individuals with sleep apnea were evaluated using the Taqman low density inflammation array. Transcript levels for 3 genes, including prostaglandin-endoperoxide synthase 2 (PTGS2), were elevated in patients with sleep apnea. Interestingly, PTGS2 was also elevated in patients with EDS but who did not have sleep apnea. These data demonstrate the feasibility of using salivary transcript levels to identify individuals that self-report excessive daytime sleepiness.
    Mediators of Inflammation 01/2015; 2015:539627. DOI:10.1155/2015/539627 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep/wake disturbance is a feature of almost all common age-related neurodegenerative diseases. Although the reason for this is unknown, it is likely that this inability to maintain sleep and wake states is in large part due to declines in the number and function of wake-active neurons, populations of cells that fire only during waking and are silent during sleep. Consistent with this, many of the brain regions that are most susceptible to neurodegeneration are those that are necessary for wake maintenance and alertness. In the present review, these wake-active populations are systematically assessed in terms of their observed pathology across aging and several neurodegenerative diseases, with implications for future research relating sleep and wake disturbances to aging and age-related neurodegeneration.
    SpringerPlus 12/2015; 4(1):25. DOI:10.1186/s40064-014-0777-6