Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China.

Division of Avian Infectious Diseases, State [corrected] Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Journal of clinical microbiology (Impact Factor: 4.16). 12/2011; 50(3):953-60. DOI: 10.1128/JCM.06179-11
Source: PubMed

ABSTRACT Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-type chickens in 1988. No field cases of ALV-J infection or tumors in layer chickens were observed worldwide until 2004. However, layer flocks in China have experienced outbreaks of this virus in recent years. The molecular epidemiology of ALV-J strains isolated from layer flocks was investigated. The env genes of 77.8% (21/27) of the ALV-J layer isolates with a high degree of genetic variation were significantly different from the env genes of the prototype strain of ALV-J (HPRS-103) and American and Chinese strains from meat-type chickens (designated ALV-J broiler isolates). A total of 205 nucleotides were deleted from the 3' untranslated region of 89.5% (17/19) of the ALV-J layer isolates. Approximately 94.7% (16/17) of the layer isolates contained a complete E element of 146 to 149 residues. The U3 sequences of 84.2% (16/19) of the ALV-J layer isolates displayed less than 92.5% sequence homology to those of the ALV-J broiler isolates, although the transcriptional regulatory elements that are typical of avian retroviruses were highly conserved. Several unique nucleotide substitutions in the env gene, the U3 region, and the E element of most of the ALV-J layer isolates were detected. These results suggested that the env gene, E element, and U3 region in the ALV-J layer isolates have evolved rapidly and were significantly different from those of the ALV-J broiler isolates. These findings will contribute to a better understanding of the pathogenic mechanism of layer tumor diseases induced by ALV-J.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the status of avian leukosis virus subgroup J (ALV-J) in wild ducks in China, we examined samples from 528 wild ducks, representing 17 species, which were collected in China over the past 3 years. Virus isolation and PCR showed that 7 ALV-J strains were isolated from wild ducks. The env genes and the 3'UTRs from these isolates were cloned and sequenced. The env genes of all 7 wild duck isolates were significantly different from those in the prototype strain HPRS-103, American strains, broiler ALV-J isolates and Chinese local chicken isolates, but showed close homology with those found in some layer chicken ALV-J isolates and belonged to the same group. The 3'UTRs of 7 ALV-J wild ducks isolates showed close homology with the prototype strain HPRS-103 and no obvious deletion was found in the 3'UTR except for a 1 bp deletion in the E element that introduced a binding site for c-Ets-1. Our study demonstrated the presence of ALV-J in wild ducks and investigated the molecular characterization of ALV-J in wild ducks isolates.
    PLoS ONE 01/2014; 9(4):e94980. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The J-subgroup avian leukosis virus (ALV-J) strain WB11098J was isolated from a wild Eurasian teal, and its proviral genomic sequences were determined. The complete proviral sequence of WB11098J was 7868 nt long. WB11098J was 95.3.9 % identical to the prototype strain HPRS-103, 94.2 % identical to the American strain ADOL-7501, 94.5-94.7 % identical to Chinese broiler isolates, 94.8-97.5 % identical to layer chicken isolates, and 94.4-95.0 % identical to Chinese local chicken isolates at the nucleotide level. Phylogenetic analysis showed that the WB11098J isolate shared the greatest homology with the layer strain SD09DP03 and was included in the same cluster. Interestingly, two 19-bp insertions in the U3 regions of the 5'LTR and 5'UTR that were most likely derived from other retroviruses were found in the WB11098J isolate. These insertions separately introduced one E2BP-binding site in the U3 region of the 5'LTR and a RNA polymerase II transcription factor IIB and core promoter motif of ten elements in the 5'UTR. A 5-bp deletion was identified in the U3 region of the 5'LTR. No nucleotides were deleted in the rTM or DR-1 regions in the 3'UTR. A 1-bp deletion was detected in the E element and introduced a specific and distinct binding site for c-Ets-1. Our study is the first to report the molecular characteristics of the complete genome of an ALV-J that was isolated from a wild bird and will provide necessary information for further understanding of the evolution of ALV-J.
    Virus Genes 05/2014; · 1.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian leukosis is an immunosuppressive neoplastic disease caused by avian leukosis viruses (ALV), which causes tremendous economic losses in the worldwide poultry industry. The susceptibility or resistance of chicken cells to subgroup A ALV and subgroup B, D, and E ALV are determined by the receptor genes tumor virus locus A (tva) and tumor virus locus B (tvb), respectively. Four genetic resistant loci (tva(r1), tva(r2), tva(r3), and tva(r4)) in tva receptor gene and a genetic resistant locus tvb(r) in the tvb receptor gene have been identified in inbred lines of White Leghorn. To evaluate the genetic resistance to subgroup A, B, D, and E ALV, genetic variations within resistant loci in tva and tvb genes were screened in Chinese local chicken breeds and commercial broiler lines. Here, the heterozygote tva(s1/r1) and the resistant genotype tva(r2/r2), tva(r3/r3), and tva(r4/r4) were detected in Chinese chickens by direct sequencing. The heterozygote tva(s1/r1) was detected in Huiyang Bearded chicken (HYBC), Rizhaoma chicken, and commercial broiler line 13 to 15 (CB13 to CB15), with the frequencies at 0.08, 0.18, 0.17, 0.25, and 0.15, respectively. The resistant genotype tva(r2/r2) was detected in Jiningbairi chicken (JNBRC), HYBC, and CB15, with the frequencies at 0.03, 0.08, and 0.06, respectively, whereas tva(r3/r3) and tva(r4/r4) were detected in 19 and 17 of the 25 Chinese chickens tested, with the average frequencies at 0.13 and 0.20, respectively. Furthermore, the resistant genotype tvb(r/r) was detected in JNBRC, CB07, CB12, CB14, and CB15 by pyrosequencing assay, with the frequencies at 0.03, 0.03, 0.11, 0.09, and 0.15, respectively. These results demonstrated that the potential for genetic improvement of resistance to subgroup A, B, D, and E ALV were great both in Chinese local chickens and commercial broilers. This study provides valuable insight into the selective breeding for chickens genetically resistant to ALV.
    Poultry science. 08/2014;


Available from