Article

Nutrient Biomarker Patterns, Cognitive Function, and Mri Measures of Brain Aging

Department of Neurology, Oregon Health & Science University, Portland, USA.
Neurology (Impact Factor: 8.3). 12/2011; 78(4):241-9. DOI: 10.1212/WNL.0b013e3182436598
Source: PubMed

ABSTRACT To examine the cross-sectional relationship between nutrient status and psychometric and imaging indices of brain health in dementia-free elders.
Thirty plasma biomarkers of diet were assayed in the Oregon Brain Aging Study cohort (n = 104). Principal component analysis constructed nutrient biomarker patterns (NBPs) and regression models assessed the relationship of these with cognitive and MRI outcomes.
Mean age was 87 ± 10 years and 62% of subjects were female. Two NBPs associated with more favorable cognitive and MRI measures: one high in plasma vitamins B (B1, B2, B6, folate, and B12), C, D, and E, and another high in plasma marine ω-3 fatty acids. A third pattern characterized by high trans fat was associated with less favorable cognitive function and less total cerebral brain volume. Depression attenuated the relationship between the marine ω-3 pattern and white matter hyperintensity volume.
Distinct nutrient biomarker patterns detected in plasma are interpretable and account for a significant degree of variance in both cognitive function and brain volume. Objective and multivariate approaches to the study of nutrition in brain health warrant further study. These findings should be confirmed in a separate population.

Download full-text

Full-text

Available from: Hiroko Hayama Dodge, Jul 07, 2015
1 Follower
 · 
227 Views
  • Source
    • "Many studies have shown an association of nutrition and the brain (Bowman et al., 2012). A number of important studies are included in this issue. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The knowledge base of nutrition and the brain is steadily expanding. Much of the research is aimed at ways to protect the brain from damage. In adults, the major causes of brain damage are aging and dementia. The most prominent dementia, and the condition that grabs the most public attention, is Alzheimer's disease. The assumption in the field is that possibly some change in nutrition could protect the brain and prevent, delay, or minimize Alzheimer's disease damage. Presented here is a framework for understanding the implications of this research. There is a gap between publishing research results and change in public nutrition behavior. Several influencing elements intervene. These include regulatory agencies and all the organizations and people who advise the public, all with their own perspectives. In considering what advice to give, advisors may consider effectiveness, research model, persuasiveness, and risks, among other factors. Advice about nutrition and Alzheimer's disease today requires several caveats.
    Neurobiology of Aging 05/2014; 35. DOI:10.1016/j.neurobiolaging.2014.02.029 · 4.85 Impact Factor
  • Source
    • "In a cross-sectional study of cognitively intact elderly, high plasma levels of EPA and DHA were associated with low white matter hyperintensity burden and higher executive function performance. In addition higher plasma levels of an " antioxidant " cluster (vitamins C, E, B, and D) was associated with greater total brain volume and higher scores on global cognitive function [36]. The two studies support the idea that adding antioxidants to ω-3 may enhance benefit in protecting cognitive function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress, inflammation, and increased cholesterol levels are all mechanisms that have been associated with Alzheimer's disease (AD) pathology. Several epidemiologic studies have reported a decreased risk of AD with fish consumption. This pilot study was designed to evaluate the effects of supplementation with omega-3 fatty acids alone (ω-3) or omega-3 plus alpha lipoic acid (ω-3 + LA) compared to placebo on oxidative stress biomarkers in AD. The primary outcome measure was peripheral F2-isoprostane levels (oxidative stress measure). Secondary outcome measures included performance on: Mini-Mental State Examination (MMSE), Activities of Daily Living/Instrumental Activities of Daily Living (ADL/IADL), and Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog). Thirty-nine AD subjects were randomized to one of three groups: 1) placebo, 2) ω-3, or 3) ω-3 + LA for a treatment duration of 12 months. Eighty seven percent (34/39) of the subjects completed the 12-month intervention. There was no difference between groups at 12 months in peripheral F2-isoprostane levels (p = 0.83). The ω-3 + LA and ω-3 were not significantly different than the placebo group in ADAS-cog (p = 0.98, p = 0.86) and in ADL (p = 0.15, p = 0.82). Compared to placebo, the ω-3 + LA showed less decline in MMSE (p < 0.01) and IADL (p = 0.01) and the ω-3 group showed less decline in IADL (p < 0.01). The combination of ω-3 + LA slowed cognitive and functional decline in AD over 12 months. Because the results were generated from a small sample size, further evaluation of the combination of omega-3 fatty acids plus alpha-lipoic acid as a potential treatment in AD is warranted.
    Journal of Alzheimer's disease: JAD 09/2013; 38(1). DOI:10.3233/JAD-130722 · 3.61 Impact Factor
  • Source
    • "A diet protective against CVD and AD includes reduced intake of animal products, especially red and organ meats and high-fat dairy and avoidance of trans fats, and high intake of fish, fruit, dark and green leafy vegetables and cruciferous vegetables (Morris et al. 2004; Scarmeas et al. 2006; Barberger-Gateau et al. 2007; Gu et al. 2010). However, large clinical trials failed to show the benefit of vitamin E, B vitamins or DHA (Aisen et al. 2008; Bowman et al. 2012) despite several previous studies in favour of the important role of certain nutrients in the prevention of AD. Given the differences in dietary patterns between populations , and the interactive nature of nutrient action and metabolism , contradictory findings are not surprising. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic, multi-factorial conditions caused by a complex interaction between genetic and environmental risk factors frequently share common disease mechanisms, as evidenced by an overlap between genetic risk factors for cardiovascular disease (CVD) and Alzheimer's disease (AD). Single nucleotide polymorphisms (SNPs) in several genes including ApoE, MTHFR, HFE and FTO are known to increase the risk of both conditions. The E4 allele of the ApoE polymorphism is the most extensively studied risk factor for AD and increases the risk of coronary heart disease by approximately 40%. It furthermore displays differential therapeutic responses with use of cholesterol-lowering statins and acetylcholinesterase inhibitors, which may also be due to variation in the CYP2D6 gene in some patients. Disease expression may be triggered by gene-environment interaction causing conversion of minor metabolic abnormalities into major brain disease due to cumulative risk. A growing body of evidence supports the assessment and treatment of CVD risk factors in midlife as a preventable cause of cognitive decline, morbidity and mortality in old age. In this review, the concept of pathology supported genetic testing (PSGT) for CVD is described in this context. PSGT combines DNA testing with biochemical measurements to determine gene expression and to monitor response to treatment. The aim is to diagnose treatable disease subtypes of complex disorders, facilitate prevention of cumulative risk and formulate intervention strategies guided from the genetic background. CVD provides a model to address the lifestyle link in most chronic diseases with a genetic component. Similar preventative measures would apply for optimisation of heart and brain health.
    Metabolic Brain Disease 04/2012; 27(3):255-66. DOI:10.1007/s11011-012-9296-8 · 2.40 Impact Factor