The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals

Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Journal of Virology (Impact Factor: 4.65). 12/2011; 86(5):2706-14. DOI: 10.1128/JVI.05546-11
Source: PubMed

ABSTRACT Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.

1 Follower
  • Source
    • "TaqMan chemistry incorporates target-specific fluorescent labeled probes enabling multiple genes can be assessed in a single real time PCR reaction (Giulietti et al., 2001). To date, TaqMan real time RT-PCR assays have only been developed for a smaller number of ferretspecific gene targets (Nakata et al., 2009; Suguitan et al., 2012). To enable a broader characterization of the immune response in the ferret model, we developed a panel of TaqMan assays to detect mRNA of fifteen ferret cytokines, chemokines and immune mediators (IFN␣, IFN␤, IFN␥, IL1␣, IL1␤, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, granzyme A, MCP-1, TNF␣) and four housekeeping genes (ATF4, GAPDH, L32 and HPRT). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The ferret is an excellent model for many human infectious diseases including influenza, SARS-CoV, henipavirus and pneumococcal infections. The ferret is also used to study cystic fibrosis and various cancers, as well as reproductive biology and physiology. However, the range of reagents available to measure the ferret immune response is very limited. To address this deficiency, high-throughput real time RT-PCR TaqMan assays were developed to measure the expression of fifteen immune mediators associated with the innate and adaptive immune responses (IFNα, IFNβ, IFNγ, IL1α, IL1β, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, Granzyme A, MCP1, TNFα), as well as four endogenous housekeeping genes (ATF4, HPRT, GAPDH, L32). These assays have been optimized to maximize reaction efficiency, reduce the amount of sample required (down to 1ng RNA per real time RT-PCR reaction) and to select the most appropriate housekeeping genes. Using these assays, the expression of each of the tested genes could be detected in ferret lymph node cells stimulated with mitogens or infected with influenza virus in vitro. These new tools will allow a more comprehensive analysis of the ferret immune responses following infection or in other disease states.
    Journal of virological methods 05/2014; 205. DOI:10.1016/j.jviromet.2014.04.014 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The characterization of viral genomes has accelerated due to improvement in DNA sequencing technology. Sources of animal samples and molecular methods for the identification of novel viral pathogens and steps to determine their pathogenicity are listed. The difficulties for predicting future cross-species transmissions are highlighted by the wide diversity of known viral zoonoses. Recent surveys of viruses in wild and domesticated animals have characterized numerous viruses including some closely related to those infecting humans. The detection of multiple genetic lineages within viral families infecting a single host species, phylogenetically interspersed with viruses found in other host species, reflects past cross-species transmissions. Numerous opportunities for the generation of novel vaccines will arise from a better understanding of animal viromes.
    03/2012; 2(3):344-52. DOI:10.1016/j.coviro.2012.02.012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two studies of H5N1 avian influenza viruses that had been genetically engineered to render them transmissible between ferrets have proved highly controversial. Divergent opinions exist about the importance of these studies of influenza transmission and about potential 'dual use' research implications. No consensus has developed yet about how to balance these concerns. After not recommending immediate full publication of earlier, less complete versions of the studies, the United States National Science Advisory Board for Biosecurity subsequently recommended full publication of more complete manuscripts; however, controversy about this and similar research remains.
    Nature 06/2012; 486(7403):335-40. DOI:10.1038/nature11170 · 42.35 Impact Factor
Show more