Article

Brain Insulin Signaling and Alzheimer's Disease: Current Evidence and Future Directions

Department of Neuroscience, Uppsala University, Box 593, Husargatan 3, Uppsala, Sweden.
Molecular Neurobiology (Impact Factor: 5.29). 12/2011; 46(1):4-10. DOI: 10.1007/s12035-011-8229-6
Source: PubMed

ABSTRACT Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

1 Follower
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG), ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by Aβ pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9 month old wild type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I, and more mature type II, neurons. The DG type I cell population was greater than type II in wild type littermates. In the Tg2576 animals the type I and type II cell populations were nearly equal but could be restored to wild type levels through cognitive-enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike afterdepolarization were decreased in type I, and increased in type II cells, both of which could also be restored to wild type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment. Copyright © 2014, Journal of Neurophysiology.
    Journal of Neurophysiology 03/2015; 113(6):1712-26. DOI:10.1152/jn.00419.2014 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral microvascular impairments occurring in Alzheimer's disease may reduce amyloid-beta (Aβ) peptide clearance and impact upon circulatory ultrastructure and function. We hypothesised that microvascular pathologies occur in organs responsible for systemic Aβ peptide clearance in a model of Alzheimer's disease and that Liraglutide (Victoza(®) ) improves vessel architecture. Seven month old APPswe /PS1dE9 (APP/PS1) and age-matched wild-type mice received once-daily intraperitoneal injections of either Liraglutide or saline (n=4 per group) for eight weeks. Casts of cerebral, splenic, hepatic and renal microanatomy were analysed using scanning electron microscopy. Casts from wild-type mice showed regularly spaced microvasculature with smooth lumenal profiles, whereas APP/PS1 mice revealed evidence of microangiopathies including cerebral microanuerysms, intracerebral microvascular leakage, extravasation from renal glomerular microvessels and significant reductions in both splenic sinus density (p=0.0286) and intussusceptive microvascular pillars (p=0.0412). Quantification of hepatic vascular ultrastructure in APP/PS1 mice revealed that vessel parameters (width, length, branching points, intussusceptive pillars and microaneurysms) were not significantly different from wild-type mice. Systemic administration of Liraglutide reduced the incidence of cerebral microanuerysms and leakage, restored renal microvascular architecture and significantly increased both splenic venous sinus number (p=0.0286) and intussusceptive pillar formation (p=0.0129). Liraglutide restores cerebral, splenic and renal architecture in APP/PS1 mice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Microcirculation (New York, N.Y.: 1994) 12/2014; DOI:10.1111/micc.12186 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Alzheimer's disease (AD) is a complex neurodegenerative disorder, which involves many underlying pathological processes. Recently, it has been demonstrated that AD also includes impairments of insulin signaling in the brain. Type 2 diabetes is a risk factor for AD, and AD and diabetes share a number of pathologies. The classical hallmarks of AD are senile plaques and neurofibrillary tangles, which consist of amyloid-β and hyperphosphorylated tau. Based on the two hallmarks, transgenic animal models of AD have been developed, which express mutant human genes of amyloid precursor protein, presenilin-1/2, and tau. It is likely that these mouse models are too limited in their pathology. In this work, we describe mouse models that model diabetes and show insulin signaling impairment as well as neurodegenerative pathologies that are similar to those seen in the brains of AD patients. The combination of traditional AD mouse models with induced insulin impairments in the brain may be a more complete model of AD. Interestingly, AD mouse models treated with drugs that have been developed to cure type 2 diabetes have shown impressive outcomes. Based on these findings, several ongoing clinical trials are testing long lasting insulin analogues or GLP-1 mimetics in patients with AD.
    Reviews in the neurosciences 12/2013; 24(6):607-615. DOI:10.1515/revneuro-2013-0034 · 3.31 Impact Factor