Article

Sna3 Is an Rsp5 Adaptor Protein that Relies on Ubiquitination for Its MVB Sorting.

Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52246, USA.
Traffic (Impact Factor: 4.65). 12/2011; DOI: 10.1111/j.1600-0854.2011.01326.x
Source: PubMed

ABSTRACT The process in which ubiquitin (Ub) conjugation is required for trafficking of integral membrane proteins into multivesicular bodies (MVBs) and eventual degradation in the lumen of lysosomes/vacuoles is well defined. However, Ub-independent pathways into MVBs are less understood. To better understand this process, we have further characterized the membrane protein Sna3, the prototypical Ub-independent cargo protein sorted through the MVB pathway in yeast. We show that Sna3 trafficking to the vacuole is critically dependent on Rsp5 ligase activity and ubiquitination. We find Sna3 undergoes Ub-dependent MVB sorting by either becoming ubiquitinated itself or associating with other ubiquitinated membrane protein substrates. In addition, our functional studies support a role for Sna3 as an adaptor protein that recruits Rsp5 to cargo such as the methionine transporter Mup1, resulting in efficient Mup1 delivery to the vacuole.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargos. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargos.
    Developmental Cell 05/2013; · 12.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acidic environments in the vacuole and other acidic organelles are important for many cellular processes in eukaryotic cells. In this study, we comprehensively investigated the roles of organelle acidification in vacuolar protein localisation in Saccharomyces cerevisiae. After repressing the acidification of acidic compartments by treatment with concanamycin A, a specific inhibitor of vacuolar H(+)-ATPase (V-ATPase), we examined the localisation of GFP-fused proteins that were predicted to localise in the vacuolar lumen or on the vacuolar membrane. Of the 73 proteins examined, 19 changed their localisation to the cytoplasmic region. Localisation changes were evaluated quantitatively using the image processing programme CalMorph. The delocalised proteins included vacuolar hydrolases, V-ATPase subunits, transporters and enzymes for membrane biogenesis, as well as proteins required for protein transport. These results suggest that many alterations in the localisation of vacuolar proteins occur after loss of the acidification of acidic compartments.
    Protoplasma 05/2013; · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The yeast HECT-family E3 ubiquitin ligase Rsp5 has been implicated in diverse cell functions. Previously, we and others [1], [2] reported the physical and functional interaction of Rsp5 with the deubiquitinating enzyme Ubp2, and the ubiquitin associated (UBA) domain-containing cofactor Rup1. To investigate the mechanism and significance of the Rsp5-Rup1-Ubp2 complex, we examined Rsp5 ubiquitination status in the presence or absence of these cofactors. We found that, similar to its mammalian homologues, Rsp5 is auto-ubiquitinated in vivo. Association with a substrate or Rup1 increased Rsp5 self-ubiquitination, whereas Ubp2 efficiently deubiquitinates Rsp5 in vivo and in vitro. The data reported here imply an auto-modulatory mechanism of Rsp5 regulation common to other E3 ligases.
    PLoS ONE 01/2013; 8(9):e75372. · 3.53 Impact Factor

Full-text (2 Sources)

View
32 Downloads
Available from
May 16, 2014