Teenage Use of Portable Listening Devices: A Hazard to Hearing?

University of Colorado, Boulder, CO, USA.
Journal of the American Academy of Audiology (Impact Factor: 1.58). 11/2011; 22(10):663-77. DOI: 10.3766/jaaa.22.10.5
Source: PubMed


Recently, a number of popular media articles have raised some concern that portable listening devices (PLDs) may be increasing the risk for music-induced hearing loss (MIHL). However, literature regarding adolescents' listening behavior and how their attitudes and beliefs relate to behavior is currently limited.
The purposes of this study were (1) to investigate the relationship between volume control settings and output levels of PLDs, (2) to examine how adolescents' listening behavior changes as a function of background noise and noise isolation, (3) to investigate the relationship between self-reported listening levels and laboratory-measured listening levels, and (4) to evaluate the validity of the Listening Habits Questionnaire as a research tool for evaluating how attitudes and beliefs relate to PLD use behavior.
A descriptive study. Experiment 1 evaluated the output levels of a set of PLDs, and Experiment 2 characterized the listening behavior and attitudes toward PLD use of a group of adolescents.
Twenty-nine adolescents aged 13-17 yr, with normal hearing, participated in Experiment 2.
Experiment 1 evaluated the output levels of a set of PLDs with stock and accessory earphones using an acoustic manikin. Experiment 2 included survey measures of listening behavior and attitudes as well as output levels measured using a probe microphone.
The output levels of PLDs are capable of reaching levels that could increase the risk for MIHL, and 14% of teenagers in this study reported behavior that puts them at increased risk for hearing loss. However, measured listening levels in the laboratory settings did not correlate well with self-reported typical listening levels. Further, the Listening Habits Questionnaire described in this study may provide a useful research tool for examining the relationship between attitudes and beliefs and listening behavior.

149 Reads
  • Source
    • "NIHL is the second most common form of acquired hearing loss following age-related hearing loss.2) Other than occupational and military noise exposure, exposure to high levels of music that could lead to NIHL has been of recent interest in literatures. Notably, the term music induced hearing loss (MIHL) was used in the literature.3-5) MIHL refers to NIHL by listening to loud output levels of music for long periods of time. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to high levels of music that could lead to music induced hearing loss (MIHL) has been of recent interest especially for young adults, considering their excessive use of personal listening devices such as MP3 player. More attention should be drawn to MIHL for noting that early noise exposure leads to earlier onset of presbycusis. In search of appropriate and safe listening habits for young adults, this investigation was aimed to evaluate output levels and frequencies generated by the Samsung galaxy note MP3 player depending on two earphone types; ear-bud and over-the-ear earphones and three music genres; rock, hip-hop, ballade. A sound level meter was used to measure output level and frequency spectrum between 12.5 and 16000 Hz at all 1/3-octave bands. The following results can be summarized. 1) The earphone styles did not produce significant difference in output levels, but the music genres did. However, the results of music genres varied. 2) Neither earphone styles nor music genres produced significant difference in frequency response spectrum, except music genres at the volume settings we usually listen to. Additionally, volume levels should be lower than 50% for usual listening situation. Through this investigation, it was noted that the frequency range was substantial between 50 and 1000 Hz regardless of the styles of earphones and music genres, implying that we should be cautious of this frequency range when we listen to music. Researchers should give more attention to the effects of the mixture of output level and frequency spectrum, considering that the auditory system has frequency specificity from the periphery to the central to provide refined methods for protecting our ears from MIHL.
    Korean Journal of Audiology 09/2013; 17(2):59-64. DOI:10.7874/kja.2013.17.2.59
  • Source
    • "Such excessive noise levels are often obtained in night clubs where levels between 104 and 112dB(A) can be measured [3]. Another source of leisure noise in the younger generation is personal listening devices (PLD’s) which many teenagers and young adults use at hazardous volume settings [5], [6]. Frequent leisure noise exposure louder than 90 dB(A) holds a significantly higher risk for the development of hearing problems [7], [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research showed an increase of noise-induced symptoms in adolescents. Permanent tinnitus as a consequence of loud music exposure is usually considered as noise-induced damage. The objective was to perform an epidemiological study in order to obtain prevalence data of permanent noise-induced tinnitus as well as temporary tinnitus following noise exposure in a young population. In addition the attitudes and beliefs towards noise and hearing protection were evaluated in order to explain the use/non-use of hearing protection in a young population. A questionnaire was completed by 3892 high school students (mean age: 16.64 years old, SD: 1.29 years). The prevalence of temporary and permanent tinnitus was assessed. In addition the 'Youth Attitudes to Noise Scale' and the 'Beliefs About Hearing Protection and Hearing Loss' were used in order to assess the attitudes and beliefs towards noise and hearing protection respectively. The prevalence of temporary noise-induced tinnitus and permanent tinnitus in high school students was respectively 74.9% and 18.3%. An increasing prevalence of temporary tinnitus with age was present. Most students had a 'neutral attitude' towards loud music and the use of hearing protection was minimal (4.7%). The limited use of hearing protection is explained by a logistic regression analysis showing the relations between certain parameters and the use of hearing protection. Despite the very high prevalence of tinnitus in such a young population, the rate of hearing protection use and the knowledge about the risks of loud music is extremely low. Future preventive campaigns should focus more on tinnitus as a warning signal for noise-induced damage and emphasize that also temporary symptoms can result in permanent noise-induced damage.
    PLoS ONE 07/2013; 8(7):e70297. DOI:10.1371/journal.pone.0070297 · 3.23 Impact Factor
  • Source
    • "Although DAP devices can produce sounds with the potential to damage the inner ear (Katz et al., 1982; Fligor & Cox, 2004; Hodgetts et al., 2007), the extent to which listeners use these devices at levels and durations that can induce hearing loss remains an issue of active debate (Fligor, 2006, 2009; for discussion, see editorial comments in Rabinowitz, 2010; for excellent recent review, see Portnuff et al., 2011). Survey data suggest some listeners engage in potentially risky listening behaviors, including extended listening durations, listening at high sound levels, or both (see Vogel et al., 2008; Danhauer et al., 2009; Quintanilla-Dieck et al., 2009; Shah et al., 2009; Vogel et al., 2009), but the true prevalence of risky listening behavior is unknown as listening level, duration, and frequency must all be considered. "
    [Show abstract] [Hide abstract]
    ABSTRACT: : One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. : Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. : Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. : These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values.
    Ear and hearing 08/2012; 33(6):e44-58. DOI:10.1097/AUD.0b013e31825f9d89 · 2.84 Impact Factor
Show more